+Medicinal Chemistry of the Lanthanide Series
We are currently investigating the use of various lanthanide ions
in medicinal chemistry. This includes the design and synthesis of
macrocyclic based ribozyme and ribonuclease mimics, MRI agents and
DNA intercelators, molecular beacons and luminescent sensors. Some
of this work is also done in collaboration with Dr. Susan E. Matthews
(University of East Anglia).
+Nitrogen Based Macrocycles/Acyclic Ligands: Supramolecular Architectures
We are currently undertaking the design and synthesis of new
macrocyclic systems as potential building blocks for ion and
molecular recognition. This project, which is in two parts, consists
of synthesising pyridine-based macrocycles as possible lanthanide
luminescent probes and chiral tetraazamacrocyclic systems derived
from simple α-amino acids as MRI contrast agents. We are also
undertaking the synthesis of acyclic receptors that give rise to the
formation of novel chiral lanthanide-based molecular architectures.
+Delayed Lanthanide Luminescent Sensors
Work is being carried out on developing delayed Eu(III)/Tb(III)
based macrocyclic systems as luminescent sensors/probes for cations,
anions and neutral molecules. These sensors are based on a recognition site
(receptor) which is covalently linked to a lanthanide-based emitting
moiety (a Eu/Tb-complexed macrocycle). Prior to the ion sensing no
lanthanide luminescence is observed and the system is thus 'switched off'.
However upon ion recognition the Eu/Tb emission is 'switched on'.
+Fluorescent Sensors for Biologically Active Metal Ions using
Synthetic Receptors
We are undertaking the synthesis of linear and cyclic peptides for
the detection of biologically important metal ions such as Cu2+, Ni2+,
Na+, K+ and Li+ (drug measurements). Other work in this field involves
the development of novel sensors to measure micro-cracks in bones.
This work is carried out in collaboration with Professor Clive Lee
(Royal College of Surgeons in Ireland) and Professor David Taylor
(Trinity College Dublin).
+Fluorescent and Colourimetric Sensors for Biologically Active Anions
We are currently developing simple fluorescent and colourimetric chemosensors for
biologically important anions such as acetate, halides and phosphates.
We have also developed fluorescent chemosensors for di-anions such
as lactate and pyrophosphate. This work has been carried out in
collaboration with Dr. Paul E. Kruger (Trinity College Dublin).
+Development of Novel Anticancer Drugs
We are currently synthesising and evaluating the uses of chiral
heterocyclic aromatic systems (such as naphthalimides) as fluorescent
probes and as anti tumour agents. This work is carried out in
collaboration with Prof. Mark Lawler (Trinity College Dublin),
Prof. John M. Kelly (Trinity College Dublin) and the National
Cancer Institute (NCI), U.S.A.
+Mimicking the Function Logic Gates and Molecular Electronic Machines
We have recently developed a photoionic (lanthanide luminescence) based
logic gate, which mimics the function of semiconductor logic gates,
used in modern computing.
+Self-Assembly and Sensors on Surfaces
We are carrying out research in collaboration with Prof. Suzi Jarvis
(Trinity College Dublin) to develop novel sensors for biological systems to
be incorporated onto surfaces.
|