<u>Magnesium</u> Bulk metal relatively inert as e⁻ used in bonding. <u>Preparation</u> of solvent - free Mg

Mg(vapour)
$$\xrightarrow{\Delta}$$
 Mg(g) $\xrightarrow{-109\circ C}$ RMgX RX(g)

in liquid N_2

Preparation of fluorogrignards:

 $\begin{array}{cccc} MgCl_2 &+& 2K & \xrightarrow{THF} & 2KCl &+& Mg(atomic) & \frac{C_8H_{17}F}{25^{\circ}C} & C_8H_{17}MgF \\ (anhydrous) & & more electronegative & finely divided & 3NS & 89\% \end{array}$

Binary Organometallic Compounds

By dioxan displacement of schlenk reaction see earlier or transmetallation with HgR₂. reactivity of Hg-C bond due to homolytic fission. Magnesacycles can result from solvent induced by ? shifts.

eg.
$$2BrMg(CH_2)_nMgBr$$
 $\xrightarrow{}$ $dioxane$ $(CH_2)_nMg + MgBr_2(dioxane)_2$
 $n = 4,5,6,$

• Solid Grignard reagents can be 4 coordinated ?Be and up to 5, 6 coordinate with donor species.

NB Group 12 transition metals Zn, Cd, Hg have similar reactivity /stochiometry s^2d^{10} . Form divalent species exclusively - loss / one of s electrons only.

Zinc preparation alkylzinc species

Zn(powder) + EtI \longrightarrow EtZnI $\xrightarrow{\Delta}$ Et₂Zn + ZnI₂ /trace Cu disproportionates

preparation of aryl/zinc species

 $ZnX_2 + 2ArLi$ X = Br,I. /Et₂0 <u>Halomethyl species</u> Preparation $ZLiX + ZnAr_2$

$$ZnX_2 + 2CH_2N_2 \xrightarrow{Et_2O} Zn(CH_2X)_2 + 2N_2$$

(X \ne F) tetrameric in solution

act as source of methylene for reactions.

$$Zn(CH_2X_2)_2 + 2 = \langle - - ZnX_2 + \rangle = \langle - - ZnX_2 + \rangle$$

Both Zn-C and C-X bonds are active -reaction occurs via intermediate $H_2Zn^+-CH_2X$. Evidence for the coordination of Zn occurs when use chiral reagent eg.

<u>General Properties</u> : very sensitive to O_2 , spontaneously inflammable volatile . Similar reactions but less reactive than Grignards.

eg. no reaction with CO_2 except at high pressure.

<u>Coordination Compounds</u> especially with σ -donor ligands. Chelating ligands give additional stability.

Unlike Me₂Zn-OMe₂ which partially decomposes at 44° cubic structures with loss of active H eg. Me₂Zn + MeOH \rightarrow (MeZnOMe)₄ Produces similar compounds to BeR₂ with bipy.

		λmax	log?max
ZnBr ₂ bipy	colourless	310	4.13
ZnPh ₂ bipy	pale yellow	350	2.91
ZnEt2bipy	orange red	420	2.77
Zn ⁺ Bu ₂ bipy	red	425	2.56
Zn+Ptbipy	dk red	480	2.63

Looking at transition from Zn£d orbitals .(probably) Intensity change due to polarisation.

<u>Mercury/Cadmium</u> far less reactive than Zn Mercury halides attacked by bacteria $\to HgR_2$ -far more toxic $% R_2$ and easily absorbed into food chain

Hg particular facility to attack aromatic systems cleaning of coal tar

Aluminium

Preparation

separate by fractional distillation as most volatile. use aprotic solvent. N_2

2. Also direct processing using Zeigler method

A1 + $3/2H_2$ + $3C_2H_4 \longrightarrow 1/2(Et_3AI)_2$ dimer high temp. and pressure

Structure of Me₆Al₂ :

dimeric detailed analysis of bond lengths and angles \rightarrow conclusion that bonding scheme for Al is intermediate between sp³ and sp²

Two bonding descriptions

Aluminium -hard metal and AlR₃ are Lewis acids forming Lewis base adducts with donor ligands.

\downarrow	ΔH heat of complexation
	form most stable
	compounds with hard bases.
	Ļ

cf remember Zinc	- ZnMe ₂	+ MeOH -	\rightarrow (MeZnOMe) ₄
cf remember Be -	(BeMe ₂) _n	+ Me ₂ NH	trimers/dimers

When an active H is present on the donor the 1:1 adduct is generally non isolable and elimination occurs.

Secondary amines give a similar reaction but give the dimer

$$2\text{Me}_{3}\text{Al} + \text{Me}_{2}\text{NH} \longrightarrow 2\text{Me}_{3}\text{Al} : \text{NHMe}_{2} \xrightarrow{110^{\circ}} \text{Me}_{2}\text{AlNMe}_{2})_{2}$$

aluminium loses Me group + 2CH₄
$$Me_{2}\text{Al} \swarrow N$$
$$Me_{2}\text{Al} \swarrow N$$
$$Me_{2}$$

Dimer/trimer relationship determined as before: bond strain vs entropy.

eg. (Me₂Al-OMe)₃ yet (Me₂AlSMe)₂ steric interaction of Me groups

S larger than O can accommodate methyl groups and reduce steric strain.

System with 2 active hydrogens eg. aniline PhNH₂ -cubic structures

 $(Ph_3Al)_2 + PhNH_2 \longrightarrow (PhAlNPh)_4 + 2PhH$

H atoms cleaving two Ph groups

Very Brief Comparison of Chemistry of Al and B

- 1. Both form organyls when in oxidation state +3.
- 2. BR₃ do not form dimeric species possibly due to steric bonding (although B_2H_6 -boranes)

BR₃ not hydrolysed by water due to low B-C bond polarity but low molecular weight organyls e.g. BMe₃ do react readily with O₂

The lack of hydrolysis contrasts with $AlR_3 \Rightarrow Al(OH)_3$

3. AlR₃BR₃ dimers like (AlR₃)₂ show rapid inter- amd intra- molecular exchange. This can be detected in the NMR ie.

4. Both AlR_3 (see earlier) and BR_3 form adducts with donor species.

eg. A table of the formation adducts with Me₃B using amines

donor	NH ₃	MeNH ₂	Me ₂ NH	
$\Delta {{H_{\mathrm{f}}}^{\varnothing}}$	-13.75	-17.64	-19.26	-19.94

 \longrightarrow increasing donation as increase no. of Me substituents and then alkyl groups.

(purposely missed out Me₃N).

Me₃N would be expected to have ΔH_{f}^{o} intermediate between Me₂NH and

actually it is -17.62 (i.e increased) due to some steric interaction of between the three methyl groups.

If starting BR_3 is tri-(1-naphthylboron) steric strain is so great that electronic effects are outweighed by steric arguments. eg. The order of ease of complexation is now:

 $NH_3 > MeNH_2 > Me_2NH > Me_3N$ and no reaction with

6. Both undergo hydroboration v hydroalumination

$$\begin{array}{rrr} B_2H_6 & + & 6 \ C_2H_4 \longrightarrow & 2 \ B(CH_2CH_3)_3 \\ & RT \end{array}$$

Readily undertaken even for sterically hindered alkenes.

7. Boron (not Al) hydrides are e⁻ deficient and give a range of cage structures all e⁻ deficient clusters. B_2H_6 , B_4H_{10} , B_5H_9 , $B_{10}H_{14}$

8. Boron forms ring complexes which are extremely stable. In reaction below might expect the formation of small volatile B-containing species, actually the alkyl chain rearranges.

Et Β B B B isomerism

GROUP I4

Chemistry of Si, Ge, organometallic compounds v.similar but as descend the group the element-C bond strength decreases as increasing metallic character . Main difference between these species and Group 1-13 is that here we have a sufficient no. of e^{-} to have classical bonding.

Preparation of Organo-Silicon Compounds

1. Grignard reagent

 $SiX_4 + 4 RMgX \longrightarrow SiR_4 + 4 MgX_2$

X = halogen preferably Cl or alkoxyl group

2. Lithium organyl.

 $R_3Si-H + LiR' \longrightarrow R_3SiR' + LiH$

3. Wittig Coupling_(unlike above two reactions does not require preformed R-M)

SiCl₄ + 4PhCl + 8Na \longrightarrow SiPh₄ + 8NaCl Et₂O/THF under N₂

4. Hydrosilation

$$Cl_3Si-H + CH_2=CH_2$$
 $\xrightarrow{H_2PtCl_6}$ $Cl_3SiCH_2CH_3.*$

most efficient with electron withdrawing groups on the Si \Box polar Si-C bond

On hydrolysis this reaction can lead to Polymer formation

polymer chain or rings

supposing start with monoethyl cmpd instead

if hydrolyse* and dehydrate \longrightarrow Et Et -O-Si-O-Si-O-Si- siloxane -O-Si-O-Si-O-Si- sheet polymer -O-Si-O-Si-O-Si- sheet polymer -O-Si-O-Si-O-Si-

<u>Siloxanes</u> v. important depending on structure \Rightarrow oils, elastomers, resins. High thermal stability, corrosion resistance, flexible due to low barriers to conformational change. Low temp. coefficient of viscosity . High vacuum lubricants.

Reactions at Si-C bonds

Si-C bonds estimated to have only 10% ionic character: nucleophilic and electrophilic attack requires harsh conditions.

Nucleophilic attack (at Si)

1. alkyl silanes

 $Me_{3}SiCR_{3} + OR' \xrightarrow{slow} Me_{3}SiOR + CR'_{3} \xrightarrow{fast} HCR_{3}$ hexamethylphosphoric trisamide HMPA, aprotic solvent [(CH_{3})_{2}N]_{3}P(O)

Reaction is faster if desilvation relieves ring strain in the starting material or if good leaving groups are present. ie. one in the β -position

e.g. the ripening of bananas can be hastened artificially using

 $(PhCH_2O)_2MeSiCH_2CH_2CI \rightarrow C_2H_4 + (PhCH_2O)_2MeSi^+Cl^-$

2. aryl silanes

Fluoride ion used as nucleophile (Si-F) $\Delta H_f = 565 \text{ kJmol}^{-1}$ (strongest known single bond)

3. allyl silanes

Sakurai reaction nucleophilic attack of F^- at Si \Rightarrow allyl anion as intermediate.

Regiospecific attack of allyl anion on carbonyl

Electrophilic attack at C

1. allyl silanes in presence of strong Lewis acid as catalyst.

$$Me_{4}Si + HCl \xrightarrow{AlCl_{3}} Me_{3}SiCl + CH_{4}$$
$$Et_{4}Si \xrightarrow{I_{2}} Et_{3}SiI + EtI$$

concentrated H_2SO_4 gives Si-C bond cleavage but \rightarrow siloxanes.

2. Aryl silanes protodesilyation

Cyclocarbosilanes

Generally SiMe₄ is stable and unreactive , obtainable pure, thermally stable to $700^{\circ}C \Rightarrow$ used as reference in ²⁹Si, ¹H, ¹³C NMR - all give one signal sharp singlet.

However if Me₄Si is heated > 700° C $\longrightarrow \sim 45$ compounds with bp< $110^{\circ}/2$ mmHg 1 min. these include cyclic carbosilanes

Fluxional organosilanes

Result from a series of Si-C bond cleavages and reformations.

eg. Me₃SiCl + NaC₅H₅ \longrightarrow Me₃Si(η^1 -C₅H₅) + NaCl Me_3Si a

Expected ¹H NMR data 3 Cp signals - actually produces one signal.

Reason : molecule undergoing a fluxional process called ring whizzing

1) metallotropic 1,2-shift

2) prototropic 1,2-shift $\sim 10^6$ times slower.

If ¹H NMR spectrum is cooled to -100° C then fluxional process is slowed down and expected signals observed.

The slow prototropic shift is such that each isomer exists long enough for a mixture of products to be formed in the Diels-Alder reaction with RC≡CR

<u>Me₂SiCp₂</u> gives an interesting complex with $Fe_2(CO)_9$ that has analogous structure to one isomer of $(CpFe(CO)_2)_2$.

Formation of Cycloheterosilanes -saturated

-usually prepared from di-Grignard reagents or dihalides and metal.

2 examples where reactions occurring predominantly to reduce the ring strain

(not due to Si-C bond polarity which is very low)

1. insertion of SO₂

2. Reaction with heptanol -generally unreactive alcohol.

Thermal stability -relatively high 600° C due to necessity for Si-C bond cleavage.

Silacyclopropanes- recent addition to chemistry of heterocycles

this species extremely reactive Si ring opening occurs on reaction with O₂, H₂O, ⁻OOH,CCl₄, RLi all at RT

Simple <u>dimethylsilacyclopropane</u> has been prepared but has a half-life of 81hrs and when impure is rapidly oxidised in air

Alternate route for the formation of silcyclopropane rings is from silylene (analogous to a carbene

Alternative is to prepare the silylene in situ.

rapidly decomposed in air or water

but stable at RT in solution thermally more stable with SiMe₃ substituents on alkane. double bond imposes 120° angle Advantages of organotin compounds - Mossbauer spectroscopy-¹¹⁹Sn NMR active I = 1/2

These techniques enable us to examine ligand interaction with a metal in two OS and coordination no.

Sn - as descend Group 14 stability of lower OS increases - inert pair effect eg. $SnCl_2(s)$.

Second factor is the greater structural diversity observed for Sn compounds – can actually increase its coordination no. beyond 4. ie. not simply forming sp³ hybridisation but uses its low-lying d-orbitals.

Mossbauer effect : due to recoiless emission and resonance absorption of γ rays. The ¹¹⁹Sn nucleus emits a γ ray with 23.6eV energy . By moving the source (usually SnO₂ or Mg₂Sn) relative to the sample, the energy of the emergent ray is modulated by the Doppler effect until it matches the <u>nuclear excitation energy of the sample</u>. At this point aborption will occur at a relative velocity called the isomer shift <u>IS</u>.

The energy difference between the ground and excited state is influenced by the electron density about the nucleus. This influence is a result of ground and excited nuclei having different radii and hence differing electrostatic interaction with the surrounding *S* electrons. The <u>IS</u> is a comparasion of the nuclear spin excitation energy of ¹¹⁹Sn in different compounds relative to SnO₂.

IS reported in mms⁻¹ and positive values of IS represent an increase in S electron density relative to SnO_2 .

Mossbauer spectroscopy signals are split when the electronic environment of the nucleus alters from cubic , octahedral or tetrahedral symmetry. QS is the quadrupole splitting.

Tin

Preparation of SnR₂

$$SnCl_2 + PhMgCl \longrightarrow MgCl_2 + "Ph_2Sn"$$

One way to test the formation of Ph_2Sn is to form 4-coordinate compounds by reaction with Br, methyl, or I in an oxidative addition reaction.

In the above case no reaction occurred. Why?

Reason - actually Ph₁₂Sn₆ from X-ray diffraction.

One strategy would be to increase the bulk of the SnR_2 groups so that their interaction prevents oligomerisation.

Even if bulky substituents are used oligomerisation/polymersation can occur e.g. $\{(Me_3Si)_2CH\}_2Sn$ is monomeric in solution and dimeric in the solid state. The dimmer does not possess a planar Sn_2C_4 framework. The Sn=Sn bond distance (276pm) is too long. It is proposed that there is overlap of sp² hybird orbitals and the vacant 5p atomic orbitals on the Sn atoms.

SnR₂ compounds are thermochromic- characteristic of Sn II compounds

Three energy levels. For thermal reasons the central energy level is occupied at RT and the e^- are excited to higher level giving the compound its deep red colour. At low temp e^- fall in energy and no transitions possible \Rightarrow decolourised at low temperature.

Formation of Sn-N containing compounds

seen formation of $Me_3Si \xrightarrow[]{H} Sn \xrightarrow[]{H} Sn \xrightarrow[]{H} SiMe_3$

and CH is isoelectronic with N hence we can form nitro compounds

expect this cmpd to be less willing to undergo oxidative addition reactions