THE CHEMISTRY OF THE ELEMENTS

Dr S. Draper

A progression through the periodic table concentrating on group trends

Hydrogen: inert, tasteless, colourless gas at room temperature

As a gas: **London forces** exist between **molecules**. These are instantaneous electric dipoles and give rise to the fact that H_2 is less dense than air and low boiling

Three **isotopes** exist :

	mm g/mol	Abundance
Hydrogen (H ¹)	1.008	99.88%
Deuterium (H ²)	2.014	0.02%
Tritium (H ³)	3.016	radioactive β -emitter, half life 12.4 years

Deuterium

- obtained by fractional distillation or electrolysis of H_2O .

Often used as a moderator in nuclear reactors.

Chemical reactions of isotopes are identical but the rate of reaction is different

e.g C-H bond cleavage occurs 5-8 times faster than C-D bond cleavage

Preparation of hydrogen:

In laboratory, hydrogen can be obtained by reduction of H^+ .

e.g **Zn** + 2HCl_(aq) \rightarrow ZnCl_{2(aq)} + H_{2(g)}

Or by the oxidation of H⁻:

e.g $CaH_{2(s)} + 2H_2O_{(l)} \rightarrow Ca(OH)_{2(aq)} + 2H_{2(g)}$

[**Remember:** Hydride (H⁻) oxidation number = -1 (H in the presence of an electropositive metal atom)]

Formation of *atomic* hydrogen requires electric arcs, discharge tubes or UV irradiation

Atomic hydrogen is used in welding as the reformation of H₂ generates heat :

$$2H \rightarrow H_2 \quad \Delta H = -436 \text{ kJmol}^{-1}$$

Preparation of Hydrogen in industry:

 $Petroleum \ industry - \textbf{cracking} \ e.g \ C_{12}H_{26(g)} \rightarrow C_5H_{10(g)} + \ C_4H_{8(g)} + \ C_3H_{6\,(g)} + \ H_{2(g)}$

Shift reaction two-step process :

1). Reforming reaction : $CH_{4(g)} + H_2O_{(g)} \rightarrow CO_{(g)} + 3H_{2(g)}$

2). Shift reaction : $CO_{(g)} + H_2O_{(g)} \rightarrow CO_{2(g)} + H_{2(g)} \Delta H = -42 \text{kJmol}^{-1}$

The carbon dioxide can be removed by "scrubbing" (K₂CO₃)

Uses of Hydrogen.

(i) Haber- Bosch Process : Synthesis of ammonia: $N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_3$

(ii) Formation of methanol - a starting material for plastics and synthetic fibres .

$$2H_{2(g)} + CO_{(aq)} \rightarrow CH_3OH_{(l)}$$

(iii) Hydrogenation - addition of H_2 to C=C bond generating a solid-fat from an unsaturated oil.

Binary compounds of hydrogen

Three main categories exist;

1. Non-stoichiometric compounds: Interstitial/metallic hydrides

e.g $2Cu_{(s)} + H_{2(g)} \rightarrow 2CuH_{(s)}$ (Black powdery solid).

Metallic hydrides can be thought of as hydrogen atoms occupying interstitial holes in metal lattices

2. Molecular compounds : Consist of discrete molecules e.g

SnH₄ (metal), SiH₄ (metalloid), NH₃, HF, (non-metals), B₂H₆ (diborane)

Preparation of molecular hydrides:

<u>direct</u> e.g $H_{2(g)} + 1/2 O_{2(g)} \rightarrow H_2O_{(g)}$ $\Delta H = -286 \text{ kJ/mol}$ <u>proton transfer</u> (from Bronsted acid) e.g $CaF_{2(g)} + H_2SO_{4(l)} \rightarrow CaSO_{4(s)} + 2HF_{(g)}$

Hydrogen bonding - An important characteristic of molecular compounds.

$$X^{\delta} - H^{\delta_+} - H^{\delta_+} - H^{\delta_+}$$

Covalent bond $\Delta H = 200 \text{ kJmol}^{-1}$ ------ Hydrogen bond $\Delta H = 20-30 \text{ kJmol}^{-1}$

Responsible for H_2O being more dense than ice and raising surface tension of water. It is also responsible for **hydrates** (solid containing a compound and water), **clathrates** (solid in which one component crystallises in an open structure into which a second small component can be trapped e.g [R₄N] [C₆H₅CO₂].39.5H₂O. **In cellulose** H–bonding gives cross-linking between glucose-like chains. **In DNA** protein structures of peptides held together by H bonds .

3. Saline Hydrides (Salt like)

Consist of the most electropositive metals e.g S-block, and hydrogen, as M^+ and $H^$ ions e.g $2K + H_{2(aq)} \rightarrow 2KH_{(s)}$

Evidence for presence of H⁻

just above Mp. these materials conduct electricity

-when molten H_2 released at anode .

Structures are like <u>NaCl</u> $- H^{-}$ radius in-between that of F⁻ and Cl⁻.

Good reducing agents : readily lose e :

 $e.g \qquad H_{2(g)} + 2e^{-} \rightarrow 2H^{-}_{(aq)} \qquad \qquad E^{o} = -2.25V$

they will reduce water

e.g.
$$\operatorname{NaH}_{(s)} + \operatorname{H}_2\operatorname{O}_{(1)} \rightarrow \operatorname{NaOH} + \operatorname{H}_2$$

-1 +1 0

(See "Atkins and Beran "table 17.3 for a list of reduction potentials .)

Group 1 Alkali Metals :

Li, Na, K, Rb, Cs, Fr.- all the elements are **soft**, silvery metals which give basic (alkali) solutions.

M-M bonding is weak and involves the delocalisation of e⁻ around a 'sea' of cations.

Preparation of the elements

Na - electrolysis of the molten salt (NaCl) (Down's Process). Chlorine gas is given off at the graphite anode (chlorine would react with steel) and molten sodium collects at the steel cathode .

(See fig 17.26 "Atkins and Beran ").CaCl₂ is added to the NaCl to lower the melting point from 800 to about 630° C.

K - more volatile metal (melt reaction)

 $KCl_{(l)}$ + $Na_{(s)} \rightarrow NaCl_{(s)}$ + $K_{(g)}$

Uses :

1. They readily from M⁺ ions (low 1st ionisation energies) -

good reducing agents.

 $TiCl_{4(g)} \ \ \text{+} \ \ 4Na_{(l)} \ \ \rightarrow \ \ 4NaCl_{(s)} \ \ \text{+} \ \ Ti_{(s)}$

2. Alloys of Na and K (mixture of the elements) are used in nuclear reactors as coolants. The packing of atoms with different metallic radii is poor so these alloys are liquids.

2. Biological -

Francium -Radioactive tracer experiments

Na⁺, K ⁺ - physiological importance

Li⁺ - used in treatment of bipolar disorder (manic depression).