Group 15 (5):

- N gas, N_2 , N=N.

- P non-metal, solid has several allotropic forms (white, red and black), acidic oxides.

- As metalloid, amphoteric oxide.
- Sb blue-white lustrous metalloid, amphoteric oxide.
- Bi pink-white metal, basic oxide.

Nitrogen – preparation by fractional distillation of air (O₂ Bp -183°C, N₂ Bp -196°C)

Uses

- Haber Bosch process NH_{3.}
- explosives
- Plastics
- Fertilisers. e.g. NH₄NO₃.

Some plants have a natural process for fixing nitrogen – leguminous.

Phosphorous

- Elemental form has 19 allotropes.

Main allotropes:

- White: formed from condensed $P_{4(g)}$ molecules, it is a soft molecular solid, soluble in non-polar solvents, it is very reactive in air (ignites) and is stored under H₂O. It glows with a greenish colour in air (phosphorescence).

- **Red**: formed on surface of ageing white P_4 or from molten P_4 . Thought to consist of linked P_4 tetrahedron chains, less reactive, friction causes ignition in air .

- **Black** –Amorphous, formed at high temperature and pressure may have a structure like graphite – conducts electricity.

Oxidation Numbers

- There are two main oxidation states of phosphorous 3 and 5.
- N has the widest range of oxidation numbers of any element (+5 to -3).

Negative oxidation numbers:

NH₃ (-3) nitride, pungent, colourless gas, very soluble in water.

 $NH_{3(g)} + H_2O_{(l)} \rightarrow 'NH_4OH'_{(aq)}$

- NH_3 is a Bronsted base accepting a H⁺ ion
- Lewis base, donates a lone pair of e

 $e.g \ [Cu(H_2O)_4]^{2+}{}_{(aq)} \ + \ 4NH_{3(aq)} \ \rightarrow \ [Cu(NH_3)_4]^{2+}{}_{(aq)} \ (deep \ blue \ ammine \).$

- N^{3-} (-3) nitride: e.g. $3Mg(s) + N_{2(g)} \rightarrow Mg_3N_{2(s)} + H_2O$.
- $N_3^-(-1/3)$ azide: e.g. NaN₃ used in "air bags" and detonate to give N₂

Positive oxidation numbers :

 $N_2O(+1):$ di-nitrogen oxide (nitrous oxide) anaesthetic/foaming agent in cream .

NO(+ 2) Nitrogen oxide (nitric oxide) colourless gas that reacts with air :

 $2NO_{(g)} \ + \ O_{2(g)} \ \rightarrow \ 2NO_2 \ (paramagnetic, \ odd \ number \ of \ electrons) \ .$

 $NO_2(+4)$ actually exists in equilibrium with its dimer in the gaseous phase

 $2NO_{2(g)} \leftrightarrow N_2O_{4(g)}$ (diamagnetic).

 NO_2 is a poisonous brown gas .It initiates a series of photochemical reactions in the atmosphere. $NO_{2(g)} \rightarrow NO_{(g)} + O_{(g)}$

All NO_x contribute to acid rain : NO_{x(g)} + $H_2O_{(l)} \rightarrow HNO_{3(aq)}$ nitric acid