Lecture 5

Homonuclear Diatomic Molecules

- Making MO Energy Level Diagrams Easy
- Making MO Theory Easy

Dr. Sylvia Draper SNIAMS 2.5 Smdraper@tcd.ie

Objectives – a fundamental understanding

Wave mechanics / Atomic orbitals

- The flaws in classical quantum mechanics (the Bohr Model) in the treatment of electrons
- Wave mechanics and the Schrödinger equation
- Representations of atomic orbitals including wave functions
- Electron densities and radial distribution functions
- Understanding shielding and penetration in terms of the energies of atomic orbitals

Bonding

- Revision of VSEPR and Hybridisation
- Linear combination of molecular orbitals (LCAO), bonding / antibonding
- Labelling of molecular orbitals (s, p and g, u)
- Homonuclear diatomic MO diagrams
- MO diagrams for Inorganic Complexes

2nd row Homonuclear Diatomics

• Li₂, Be₂, B₂, C₂, N₂, O₂, F₂, Ne₂

Bonding and antibonding interactions are possible between 1s, 2s and 2p on one atom with the other

Energy level diagram for O_2

- 2s and 2p energies sufficiently spaced no mixing
- Simple picture of the MO

σ

Unpaired electrons →Paramagnetic

Label MOs starting from the bottom usually discount core electrons - only valence orbitals important for bonding

1s AO's very small \rightarrow very small overlap in lower levels (small ΔE)

Other possible interactions

 σ interactions between s and p_z can be important

- Depend on the energy difference between 2s and $2p_z$
- The larger the energy difference (like in O_2) the less likely the interaction

MO diagram for N_2

- 2s and 2p energies sufficiently close for interaction \rightarrow more complex
 - -1σ and 2σ shift to lower energy
 - -3σ and 4σ shifted to high energy

σ interactions in N₂

• Take basic model for oxygen – no *s and p* interaction - and apply changes to examine how the **MO's** can interact

- $-\pi$ and σ cannot interact zero overlap $\rightarrow \pi$ level remain the same
- Examine σ – σ interactions

Bonding interactions can interact with each other $1\sigma_g$ and $3\sigma_g$

Thus $1\sigma_g$ goes down in energy and $3\sigma_g$ goes up in energy

σ^* interactions in N₂

 $4\sigma^*$

• Now examine the anti-bonding interaction $(2\sigma * \text{ and } 4\sigma *)$

4σ

Thus $2\sigma_{u}^{*}$ goes down in energy and $4\sigma_{u}^{*}$ goes up in energy

 $2\sigma^*$

For bonding with anti-bonding $(1\sigma - 4\sigma * or 2\sigma * - 3\sigma)$ the sign changes on one wave function \rightarrow zero overlap.

MO diagrams for 2nd row diatomics

• The effect of the overlap between 2s and 2p is greatest for the Li. The MO diagram changes systematically as you go across the periodic table

• s - p mixing $\rightarrow B_2$ – paramagnetic and C₂ diamagnetic

MO diagram for CO

- Same orbitals as homonuclear diatomics isoelectronic with N₂
 - different energies give rise to significant 2s 2p mixing
 - As heteronuclear diatomic the orbitals have either C or O character

- 4σ C-O anti bonding (more C)
- $2\pi^*$ π^* (uneven more carbon)
- **3** σ Primarily carbon (p_z)
- 1π π bond (uneven more oxygen)
- **2** σ Primarily oxygen (p_z)
- **1**σ C-O bonding interaction (more O)

Homonuclear Diatomic MO energy diagrams

MO treatment of BeH₂

H - Be - H -

Z

$$-$$
 Be $-1s^2 2s^2 2p^0$ H $-1s^1$

- Examine interaction of 6 AO with each other
- 2 H 1s, Be 2s and Be $2p_x$, Be $2p_y$ Be $2p_z \rightarrow 6$ MO's

Each of these is delocalised over three atoms and can hold up to two electrons

 p_x and p_y have zero overlap \rightarrow non bonding

Compare these two MO's with no mixing of s and p orbitals with the localised model generated from two equivalent bonds formed via *sp* hybridization

Alternative approach

Alternative Route to energy level diagram for BeH₂

MO treatment of H_2O

Ζ

H

X

- H_2O is not linear but why ?
 - We will examine the MOs for a non-linear tri-atomic and find out.
 - What orbitals are involved 2 H 1s + O 2s, O $2p_x$ O $2p_y$, and O $2p_z$
- Start by creating MO's from the hydrogen 1*s* orbitals.

MO's of H_2O

- Out of phase H 1s orbitals
 - Only interact with $p_x \rightarrow 2$ MO's
 - Zero overlap with p_y

Bonding

anti - bonding

Energy level diagram for $H_2O z \to O$

There are not two lone pairs !

► X

Slightly bonding Pz Non bonding Py

Very different to the VB concept of two identical sp³ filled orbital

MO theory correct.

π MO's of Benzene

- π bonding is more important for reactivity –independent of σ (zero overlap)
 - six p_x orbitals \rightarrow combine to form six MO's
 - Lowest energy all in phase
 - Degenerate levels (1 nodal plane \rightarrow 2 nodes)
 - Degenerate levels (2 nodal planes \rightarrow 4 nodes)
 - Highest energy all out of phase

- 2 electron per MO spread over 6 atoms

- Compare with Lewis structure
- has to resort to resonance structures to explain benzene

