Lecture 4

- •• Revision of hybridisation
	- Mixing atomic orbitals on the same atom
- • Molecular Orbital Theory
	- How atomic orbitals on different atoms interact
	- The labelling of the new molecular orbitals
- • Homonuclear Diatomic Molecules
	- The energies of the resulting molecular orbitals

sp hybridisation

- • *sp* hybridisation
	- Mix and one *s* and one *p* orbital two combinations $s + p_z$ and $s p_z$
	- $-$ Two AOs \rightarrow two hybrid AOs
	- Sign of the wavefunction is important when mixing atomic orbitals
	- *sp* therefore means that the hybrid orbital is 50% *^s* and 50% *p*

Hybridisation – *sp*² hybridisation

•• Lewis structure \rightarrow 3 directions

- •• Molecular is planar
- •• Three directions each at 120o
	- \rightarrow mix one s with two *p* orbitals

Hybridisation – π bonds

- What about the other two electrons shared by the C atoms in ethene that are not in hybridised orbitals?
- •• These create a π bond above and below the plane of the molecule
	- Could think of the C as going from $2s^2 2p^2 \rightarrow$ three (sp^2) and one p_x^{-1}

Hybridisation – sp^3

- • For tetrahedral molecules we have to mix the *^s* with all the *^p* orbitals (*sp*3)
	- e.g. methane

4 electron pairs

sp³ hybridisation tetrahedral

–H₂O can also be thought of like this with two of the sp³ orbitals occupied by lone pairs.

Hybridisation – *d* orbitals

Hybridisation – Table Summary

Molecular orbital theory

- •• MO theory (Robert Mullikan) assumes
	- Electrons are delocalised
	- $-$ MO's formed by addition and subtraction of AO's \rightarrow Linear Combination of Atomic Orbitals (LCAO) (like hybrid AO's but entire molecule)
- •• H₂ molecule – interaction of two hydrogen 1s orbitas (φ_a and φ_b) In phase interaction

$$
\psi_1 = (\varphi_a + \varphi_b)
$$

 \rightarrow Constructive interference

Out of phase interaction

$$
\psi_2 = (\varphi_a - \varphi_b)
$$

 \rightarrow Destructive interference

Interaction of 2 AO \rightarrow 2 MO's

Charge density associate with MO 's in H_2 .

•Charge density given by ψ^2

- In phase interaction \rightarrow enhance density between the atoms

$$
\psi_1^2 = (\varphi_a + \varphi_b)^2 \qquad \Longrightarrow \qquad \psi_1^2 = [\varphi_a]^2 + [\varphi_b]^2 + 2[\varphi_a \varphi_b]
$$

referred to a positive overlap (σ bonding) $\psi_1 = \psi_{\sigma}$

- Out of phase interaction \rightarrow reduced density between the atoms

$$
\psi_2^2 = (\varphi_a - \varphi_b)^2 \qquad \Longrightarrow \qquad \psi_2^2 = [\varphi_a]^2 + [\varphi_b]^2 - 2[\varphi_a \varphi_b]
$$

referred to a negative overlap (σ^* anti-bonding) $\psi_2 = \psi_{\sigma^*}$

New wave functions must be normalised to ensure probability in 1 !

Energy level diagram for H₂

- •• Interference between AO wave functions \rightarrow bonding
	- Constructively \rightarrow bonding interaction
	- Destructively \rightarrow anti-bonding interaction

- • Energy level diagram represents this interaction
	- Two *^s* orbitals interaction to create ^a low energy bonding and high energy anti-bonding molecular orbital
	- Electrons fill the lowest energy orbital (same rules as for filling AO's)
	- $-$ Bonding energy = 2 ΔE

What happens when the AO's have different energies?

- • Hypothetical molecule where the two *^s* orbitals have different energies $E(\varphi_a) < E(\varphi_b)$
- •• What would the MO's be like?
	- $-$ Bonding MO will be much more like the low energy orbital \mathcal{P}_a
	- $-$ Anti-bonding MO will be much more like high energy orbital φ_b
- •• We can say that the bonding MO is $\psi_{\sigma} = (C_a^{\sigma} \varphi_a + C_b^{\sigma} \varphi_b)$
- •• Where the coefficients C, indicate the contribution of the AO to the MO

So for $\,\,\psi_{\sigma}^{\vphantom{\dagger}}\,$ $C_a^{\sigma} > C_b^{\sigma}$

Linear Combination of Atomic Orbitals - LCAO

• We wrote an equation using coefficients for the contribution of AO's to the bonding MO, we can do the same for the anti-bonding MO

$$
\psi_{\sigma} = \left(C_a^{\sigma} \varphi_a + C_b^{\sigma} \varphi_b \right) \qquad \psi_{\sigma^*} = \left(C_a^{\sigma^*} \varphi_a - C_b^{\sigma^*} \varphi_b \right)
$$

where the coefficients are different are reflect the contribution to each MO

•• The sign can be adsorbed into the coefficient and we can write all of the MO's in ^a general way

$$
\psi_n = \begin{pmatrix} C_a^n \varphi_a + C_b^n \varphi_b \end{pmatrix}
$$

n = 1

$$
\psi_1 = \begin{pmatrix} C_a^1 \varphi_a + C_b^1 \varphi_b \end{pmatrix}
$$

n = 2

$$
\psi_2 = \begin{pmatrix} C_a^2 \varphi_a + C_b^2 \varphi_b \end{pmatrix}
$$

 \bullet • The coefficients contains both phase (sign) of the AO's and how big their contribution (size) is to ^a particular MO

LCAO

•Generally we can write

$$
\psi_n = \sum_{x=a...}^{NoAO's} C_x^n \varphi_x
$$

 $x = a,b,c \ldots$ (all of the AO's in the molecule) $n = 1,2,3,\ldots$ (the resulting MO's)

• So
$$
MO(1) = \psi_1 = C_a^1 \varphi_a + C_b^1 \varphi_b + C_c^1 \varphi_c + C_d^1 \varphi_d + ...
$$

$$
MO(2) = \psi_2 = C_a^2 \varphi_a + C_b^2 \varphi_b + C_c^2 \varphi_c + C_d^2 \varphi_d + \dots
$$

$$
MO(3) = \psi_3 = C_a^3 \varphi_a + C_b^3 \varphi_b + C_c^3 \varphi_c + C_d^3 \varphi_d + \dots
$$

 C_x^1 - coefficients s for MO(1), $\mathcal{C}_x^{\text{Coefficients}}$ for MO(2) etc.

•• And an examination of the coefficients tells us the bonding characteristics of the MO's

What interactions are possible

- •We have seen how *^s* orbitals interact – what about other orbitals
- • If you have positive overlap reversing the sign \rightarrow negative overlap

E.g.
$$
s + s
$$
 and $p_x + p_x \rightarrow +ve$
 $s - s$ and $p_x - p_x \rightarrow -ve$

•• Must define orientation and stick to it for all orbitals. Thus

> $p_z + p_z \rightarrow -ve$ $p_z - p_z \rightarrow +ve$

 $p_x - p_x$

 $d_{zx}-p_x$

What interactions are NOT possible

- •• Some orbitals cannot interact – they give rise to zero overlap
- •• Positive overlap (constructive interference) on one side in cancelled by negative overlap (destructive interference) on the other
- •• $s + p_x$ positive overlap above the axis is cancelled by negative overlap below
	- Same is true for the other interactions below

Labelling molecular orbitals

1 **Symmetry Label** (internuclear axis is always the ^z axis) σ = spherical symmetry along the bond axis (same symmetry as s orbital) no nodes pass through the bond axis

Labelling molecular orbitals

2Bonding and Anti-bonding Labels

 π

 $p_x + p_x$

Additional * if the interaction is destructive

Labelling molecular orbitals

3 Label indicating the presence of ^a Centre of Inversion

•• MO's sometimes labelled with the type of AO forming them e.g. $\sigma_{\rm s}$ or $\sigma_{\rm p}$