Lecture 4

- Revision of hybridisation
 - Mixing atomic orbitals on the same atom
- Molecular Orbital Theory
 - How atomic orbitals on different atoms interact
 - The labelling of the new molecular orbitals
- Homonuclear Diatomic Molecules
 - The energies of the resulting molecular orbitals

sp hybridisation

- *sp* hybridisation
 - Mix and one s and one p orbital two combinations $s + p_z$ and $s p_z$
 - Two AOs \rightarrow two hybrid AOs
 - Sign of the wavefunction is important when mixing atomic orbitals
 - sp therefore means that the hybrid orbital is 50% s and 50% p

Hybridisation – sp^2 hybridisation

• Lewis structure \rightarrow 3 directions

- Molecular is planar
- Three directions each at 120°
 - \rightarrow mix one s with two *p* orbitals

Hybridisation – π bonds

- What about the other two electrons shared by the C atoms in ethene that are not in hybridised orbitals?
- These create a π bond above and below the plane of the molecule
 - Could think of the C as going from $2s^2 2p^2 \rightarrow$ three (sp^2) and one p_x^{-1}

Hybridisation $-sp^3$

- For tetrahedral molecules we have to mix the *s* with all the *p* orbitals (sp^3)
 - e.g. methane

4 electron pairs

*sp*³ hybridisation

tetrahedral

- H_2O can also be thought of like this with two of the sp³ orbitals occupied by lone pairs.

Hybridisation – d orbitals

Hybridisation – Table Summary

Hybrid isation	Atomic orbitals that are mixed	Geometry	General formula	Examples
sp	<i>s</i> + <i>p</i>	linear	AB ₂	BeH ₂
sp^2	$s + p_x + p_y$	trigonal planar	AB ₃	BF ₃ , CO ₃ ²⁻ C ₂ H ₄
sp ³	$s + p_x + p_y + p_z$	tetrahedral	AB ₄	SO ₄ ²⁻ , CH ₄ , NH ₃ , H ₂ O,
sp ³ d	$s + p_x + p_y + p_z + dz^2$	Trigonal Bipyramidal	AB ₅	PCl ₅ , SF ₄
	$s + p_x + p_y + p_z + dx^2 - y^2$	square pyramidal		
sp^3d^2	$s + p_x + p_y + p_z + dz^2 + dx^2 - y^2$	octahedral	AB ₆	SF_6 [Ni(CN) ₄] ²⁻ [PtCl ₄] ²⁻

Molecular orbital theory

- MO theory (Robert Mullikan) assumes
 - Electrons are delocalised
 - MO's formed by addition and subtraction of AO's → Linear Combination of Atomic Orbitals (LCAO) (like hybrid AO's but entire molecule)
- H₂ molecule interaction of two hydrogen 1s orbitas (φ_a and φ_b) In phase interaction

$$\psi_1 = (\varphi_a + \varphi_b)$$

→ Constructive interference

Out of phase interaction

$$\psi_2 = (\varphi_a - \varphi_b)$$

 \rightarrow Destructive interference

Interaction of 2 AO \rightarrow 2 MO's

Charge density associate with MO's in H₂

• Charge density given by ψ^2

- In phase interaction \rightarrow enhance density between the atoms

$$\psi_1^2 = (\varphi_a + \varphi_b)^2$$
 $\psi_1^2 = [\varphi_a]^2 + [\varphi_b]^2 + 2[\varphi_a \varphi_b]$

referred to a positive overlap (σ bonding) $\psi_1 = \psi_{\sigma}$

- Out of phase interaction \rightarrow reduced density between the atoms

$$\psi_2^2 = (\varphi_a - \varphi_b)^2$$
 $\psi_2^2 = [\varphi_a]^2 + [\varphi_b]^2 - 2[\varphi_a \varphi_b]$

referred to a negative overlap (σ^* anti-bonding) $\psi_2 = \psi_{\sigma^*}$

New wave functions must be normalised to ensure probability in 1 !

Energy level diagram for H₂

- Interference between AO wave functions \rightarrow bonding
 - Constructively \rightarrow bonding interaction
 - Destructively \rightarrow anti-bonding interaction

- Energy level diagram represents this interaction
 - Two *s* orbitals interaction to create a low energy bonding and high energy anti-bonding molecular orbital
 - Electrons fill the lowest energy orbital (same rules as for filling AO's)
 - Bonding energy = $2 \Delta E$

What happens when the AO's have different energies?

- Hypothetical molecule where the two *s* orbitals have different energies $E(\varphi_a) < E(\varphi_b)$
- What would the MO's be like ?
 - Bonding MO will be much more like the low energy orbital φ_a
 - Anti-bonding MO will be much more like high energy orbital φ_b
- We can say that the bonding MO is $\psi_{\sigma} = (C_{a}^{\sigma} \varphi_{a} + C_{b}^{\sigma} \varphi_{b})$
- Where the coefficients C, indicate the contribution of the AO to the MO

So for
$$\psi_{\sigma}$$
 $C_a^{\sigma} > C_b^{\sigma}$

Linear Combination of Atomic Orbitals - LCAO

• We wrote an equation using coefficients for the contribution of AO's to the bonding MO, we can do the same for the anti-bonding MO

$$\psi_{\sigma} = \left(C_a^{\sigma} \varphi_a + C_b^{\sigma} \varphi_b \right) \qquad \qquad \psi_{\sigma^*} = \left(C_a^{\sigma^*} \varphi_a - C_b^{\sigma^*} \varphi_b \right)$$

where the coefficients are different are reflect the contribution to each MO

• The sign can be adsorbed into the coefficient and we can write all of the MO's in a general way

$$\psi_{n} = \left(C_{a}^{n}\varphi_{a} + C_{b}^{n}\varphi_{b}\right)$$

$$n = 1$$

$$\psi_{1} = \left(C_{a}^{1}\varphi_{a} + C_{b}^{1}\varphi_{b}\right)$$

$$\psi_{2} = \left(C_{a}^{2}\varphi_{a} + C_{b}^{2}\varphi_{b}\right)$$

• The coefficients contains both phase (sign) of the AO's and how big their contribution (size) is to a particular MO

LCAO

• Generally we can write

$$\psi_n = \sum_{x=a...}^{No AO's} C_x^n \varphi_x$$

 $x = a,b,c \dots$ (all of the AO's in the molecule) $n = 1,2,3\dots$ (the resulting MO's)

• So
$$MO(1) = \psi_1 = C_a^1 \varphi_a + C_b^1 \varphi_b + C_c^1 \varphi_c + C_d^1 \varphi_d + \dots$$

MO(2) =
$$\psi_2 = C_a^2 \varphi_a + C_b^2 \varphi_b + C_c^2 \varphi_c + C_d^2 \varphi_d + \dots$$

MO(3) =
$$\psi_3 = C_a^3 \varphi_a + C_b^3 \varphi_b + C_c^3 \varphi_c + C_d^3 \varphi_d + \dots$$

 C_x^1 - coefficients for MO(1), $C_x^{\text{coefficients for MO(2) etc.}}$

• And an examination of the coefficients tells us the bonding characteristics of the MO's

What interactions are possible

- We have seen how *s* orbitals interact what about other orbitals
- If you have positive overlap reversing the sign →negative overlap

E.g.
$$s + s$$
 and $p_x + p_x \rightarrow +ve$
 $s - s$ and $p_x - p_x \rightarrow -ve$

 Must define orientation and stick to it for all orbitals. Thus

 $p_z + p_z \rightarrow -ve$ $p_z - p_z \rightarrow +ve$

 $p_x - p_x$

 $d_{zx} - p_x$

What interactions are NOT possible

- Some orbitals cannot interact they give rise to zero overlap
- Positive overlap (constructive interference) on one side in cancelled by negative overlap (destructive interference) on the other
- $s + p_x$ positive overlap above the axis is cancelled by negative overlap below
 - Same is true for the other interactions below

Labelling molecular orbitals

1 Symmetry Label (internuclear axis is always the z axis) σ = spherical symmetry along the bond axis (same symmetry as s orbital) no nodes pass through the bond axis

Labelling molecular orbitals

2 Bonding and Anti-bonding Labels

 π

Additional * if the interaction is destructive

Labelling molecular orbitals

3 Label indicating the presence of a Centre of Inversion

 $p_{x} + p_{x}$ As you go from one side of wave function through the centre of the bond the sign of the wavefunction reverses \rightarrow not centrosymmetric $\rightarrow \mathbf{u} = \text{ungerade or odd}$ $\mathcal{T}_{\mathcal{U}}$

• MO's sometimes labelled with the type of AO forming them e.g. σ_s or σ_p