Where have we been ?

Lectures 1 and 2

Bohr's Model/ Wave Mechanics/ Radial and Angular Wavefunctions/ Radial Distribution Functions/ *^s* and *p* orbitals

Where are we going ?

Lecture 3

-
- •Brief wavefunction considerations: *d* and *f* orbitals
- • Using wavefunctions and radial distribution functions (RDFs) to
	- compare atomic orbitals (AOs)
	- $-$ define penetration and shielding
	- $-$ explain the 'aufbau' building-up principle
- • Revision
	- Localised bond pictures
	- Hybridisation

Sylvia Draper

smdraper@tcd.ie

d orbitals – wave functions

- •• Five *d* orbitals for each value of n (n \geq 3) \rightarrow *l* = 2 , *m*₁ = -2, -1, 0, 1, 2
- • Wave functions slightly more complicated
	- Radial wave functions same for all *3d* orbital

$$
R(3d) = \frac{1}{9\sqrt{30}} \left(\frac{Z}{a_0}\right)^{3/2} (\rho r)^2 e^{(-\rho r/2)}
$$

- •• Max probability at r = 9 $\rm a_{0}$
- •• AOs with no nodes have max probabilty at same radius as Bohr model
- •4d orbital has 1 node

d orbitals – angular functions

- •- Angular functions same for d_{xy} , d_{yz} , d_{xz} , d_{z^2} , $d_{x^2-y^2}$ irrespective of n → same shape for *3d, 4d, 5d* orbitals using boundary surfaces
- •Five different angular functions e.g.

$$
Y(d_{xz}) = \left(\frac{15}{16\pi}\right)^{\frac{1}{2}} \sin(\theta) \cos(\theta) \cos(\phi)
$$

 Two angular nodes planes • \rightarrow orthogonal to *s* and ρ e.g. d_{xy} Nodal planes in yz and xz (+ve lobe points between d_{∞} $d_{\rm VZ}$ +x and +y axes) d_{xy} d_{z^2}

f orbitals

- •• Almost no covalent bonding because metal orbitals are so contracted \rightarrow shape not really important
- •• l = 3 \rightarrow Seven different angular functions for each n (n \geq 4)
	- *f* block is 14 element wide, same shape for *4f*, *5f* etc
	- Radial functions same for all *nf* orbitals
	- Three angular nodes (nodal planes) \rightarrow orthogonal to *s*, *p* and *d* orbitals

Penetration

- •RDF allow us to directly compare AOs on the same graph
- •The RDFs of AOs within ^a given shell (*n*) have different maxima
- •• Number of nodes $n-l-1$
	- *n* ⁼ 3 *3s* 2 nodes *3p* 1 node *3d* 0 nodes
	- *3s* has ^a peak very close to the nucleus
	- *3p* has ^a peak close to the nucleus
- • These close peaks have ^a very strong interaction with the nucleus
- •*3s* is said to be the most penetrating
- •Penetration *3s* > *3p* > *3d* ⁰

Multi-electron Atoms

- •Multi-electron atoms are assumed to have hydrogen-like wave functions.
- •Differences are the increase in atomic number and the effective nuclear charge.
- •• In reality the electrons repel each other and shield the nucleus
	- Effective nuclear charge

 $Z_{\text{eff}} = Z - S$ S ⁼ ^a screening or shielding constant

- •• Li atom – why is the electronic configuration $1s^22s^1$ and not $1s^22p^1$?
	- 1*^s* electrons shield the valence electron from the nuclear charge
	- 2*^s* penetrates more effectively \rightarrow feels a greater nuclear charge
	- 2*p* penetrates less effectively
	- 2*^s* is filled first
- • $E(1s) < E(2s) < E(2p)$
- • $E(ns) < E(np) < E(nd)$

Periodic table

- •Shielding and penetration \rightarrow $E(ns) < E(np) < E(nd) < E(nf)$
- • This gives rise to the electronic configuration of atoms and the order of elements in the periodic table
- • Orbitals are filled in order of increasing energy (Aufbau principle) and electrons fill degenerate (same energy) levels singularly first to give maximum spin (Hund's rule)

More complex results of penetration and shielding Energy levels vs atomic number

- • For H (*Z*=1) all orbitals within ^a given *ⁿ* shell have the same energy
- •• Penetration follows *s* > *p* > *d* > *f*
- • *3d* shielded very effectively by orbitals of n \le 3
- • *3d* almost does not change in energy with Z until $Z = 19$
- • *4s* filled, *ⁿ* ⁼ 4 does not shield *3d* effectively \rightarrow energy drops
- •Similar pattern for *4d* and *4f*

The Transition Metal Hiccup !

- •For K and Ca the $E(3d) > E(4s)$ so 4s filled first,
- •At Sc the E(*3d*) < E(*4s*) (but very close)
- •For Transition metals E(*3d*) < E(*4s*) so the *4s* electrons are lost first when ionized

Drawing representations of AO's

- •• Need to be able to draw AOs when considering their interactions *i.e.* when they form molecular orbitals (MOs).
	- \rightarrow Simple diagrams are all you need !!!!

Making Bonds Localised Bond Pictures Revising JF Lewis Bonding / VSEPR

- • Localised view of bonding
	- Views bonds between two atoms as covalent (social)
	- $-$ Each bond is independent of the others
	- Each single bond is made-up of two shared electrons
	- $-$ Each 1 $^{\rm st}$ or 2 $^{\rm nd}$ row atom attains a noble gas configuration
	- Shape obtained by VSEPR (Valence Shell Electron Pair Repulsion)

Each H has a share in the 2 electrons \rightarrow H $-$ H

e.g. H_2 H ^H **[×]**^H ⁺ **[×]** ^H

Lewis bonding

- •• Octet rule for main group elements / 18 electron rule for transition metals
	- All atoms have ^a share of 8 electrons (main group : *^s* ⁺ three *p* orbitals) or 18 electrons (TM : *^s* ⁺ three *p* ⁺ five *d* orbitals) to fill all their valence atomic orbitals.

Lewis bonding – polyatomics (H₂O)

- Oxygen (Group 16) has 8 electrons, each hydrogen (Group 1) has 1 electron
- Oxygen has two lone pairs

$$
2 H^{\bullet} + \times_{O}^{\mathsf{xx}} \longrightarrow H^{\bullet} \times_{O}^{\mathsf{xx}} H^{\bullet}
$$

•Shape – VSEPR

- Electrons repel each other (repulsion between lone pair electrons > repulsion between electrons in bonding pairs)
- $-$ Oxygen has 2 bond pairs and 2 lone pairs \rightarrow 4 directions to consider
- $-$ Accommodate 4 directions \rightarrow Tetrahedral shape
- $-$ H₂O is bent with H-O-H angle of 104.5^o
- Compares with a perfect tetrahedral of $109.45^{\circ} \rightarrow$ lone pair repulsion

Lewis bonding – polyatomics (ethene)

4 electrons shared between the Carbon atoms \rightarrow bond order = 2 \rightarrow C = C Each Carbon –hydrogen bond involves the sharing of electrons \rightarrow C — H

- • Shape – VSEPR
	- Electrons repel each other
	- Carbon atoms have 3 directions bond to C and two bonds to two H
	- Accommodate 3 bond direction \rightarrow 120^o in a plane (molecule is flat)

Lewis structures – that break the Octet Rule

•Some structures to not obey the 8 electron rule. These usually contain a $3rd$ row element as the central atom e.g PF_5

(only the electrons round the P are shown for clarity)

- F atoms have 3 lone pairs (6 electrons) + 2 in each bond \rightarrow 8
- $-$ P atom has 5 bond pairs with 2 electrons each \rightarrow 10 electrons !
- Overall 5 directions to accommodate \rightarrow trigonal bipyrimidal

Valence bond theory and hybridisation

- •• Valence bond theory (Linus Pauling)
	- Based on localised bonding
	- Hybridisation to give ^a geometry which is **consistent** with experiment.
	- Hybridisation constructs new hybrid atomic orbitals from the AOs
	- ON THE SAME ATOM
- •• Use Lewis model (number of electron pairs) \rightarrow hybridisation \rightarrow shape.
	- $-$ E.g. BeH₂, Be Group 2

H **[×]**Be **[×]**H

- •Correctly predicted by VSEPR to be linear – can we explain it using Aos
- • Not if we think the Be electrons are in 2*^s* spherical orbitals
	- $-$ Mix one s with one p_z orbital \rightarrow two *sp* hybrid orbitals