Lecture 1

Where it all Began

Communist

The Bohr Model

Adsorption / Emission spectra for Hydrogen

Johann Balmer (1885) measured line spectra for hydrogen: 364.6 nm (uv), 410.2 nm (uv), 434.1 nm (violet), 486.1 nm (blue), and 656.3 nm (red).

Both absorption and emission spectra consist of discrete lines

$$
v = \Re\left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)
$$

Where \Re is the Rydberg constant (3.29 \times 10¹⁵ Hz)

Balmer series $n_1=2$ and $n_2=n_1+1$, n_1+2 , n_1+3 …..

Other series for $n_1=1$ (Lyman – UV), $n_1=3$ (Paschen – IR) etc.

Bohr model of the atom (1913)

Assumptions

1) Rutherford (1912) model of the atom (a 'planetary model' with ^a central nucleus and orbiting electrons)

2) Planck (1901), Einstein (1905) – 'the energy of electromagnetic waves is quantised' into packets called photons (particle-like property)

E ⁼ *h*^ν

Bohr model of the atom

Speed of electromagnetic waves (c) is constant (ν and λ vary)

c ⁼ νλ, ^ν ⁼ ^c/λ, Ε ⁼ *h*ν, Ε ⁼ *h*c/λ

As frequency and energy increases, wavelength decreases.

E – energy (J), *h* – Plancks constant (J s), ^ν – frequency (Hz), $\texttt{c}-\texttt{speed}$ of light (ms⁻¹), $\lambda-$ wavelength (m)

Bohr model of the atom

- • Classical electrodynamic theory rejected (charged particles undergoing acceleration must emit radiation)
- •
- •• Electron assumed to travel in circular orbits.
- • Only orbits with quantised angular momentum are allowed (as observed in spectra)

$$
mvr = n\left(\frac{h}{2\pi}\right)
$$

• Electromagnetic radition is adsorbed or emitted only when electrons jump from one orbit to another

$$
\Delta E = E_a - E_b
$$

where ^a and b represen^t the energy of the initial and final orbits

Bohr model

For a H atom an orbit is maintained only when the centrafugal force acting on the electron equals the force of attraction between it and the nucleus

These two forces must be balanced

- 1) Centrapedal (electrostatic)
- 2) Centrafugal

Equalize forces Resulting energy

$$
\frac{mv^2}{r} = \frac{Ze^2}{4\pi\varepsilon_0 r^2} \Rightarrow mv^2 = \frac{Ze^2}{4\pi\varepsilon_0 r}
$$

Z – nuclear charge, *e* – electron charge, ε_0 - permittivity of free space, *r* - radius of the orbit, *^m* – mass of electron, *^v* – velocity of the electron

Energy levels of Hydrogen

Substitute quantised momentum into energy expression and rearrange in terms of ^r (radius) (see handout for details if this annoys you !)

$$
r = \frac{n^2 h^2 \varepsilon_0}{\pi m Z e^2} = \frac{n^2 a_0}{Z}
$$

Radius (r) depends on *n2* and *1Z*

a₀ (Bohr) radius of the 1s electron in Hydrogen 52.9 pm (*n*=1, Z=1)

Substitute ^r back into energy expression give

$$
E_n = \frac{-mZ^2e^4}{8n^2h^2\varepsilon_0^2} = \frac{13.6056 \times Z^2}{n^2} \text{ (in eV)}
$$

Energy of 1s electron in H is 13.6056 eV = 0.5 Hartree $(1 \text{eV} = 1.602 \times 10^{-19} \text{ J})$

Energy (E) depends on
$$
\frac{1}{n^2}
$$
 and **Z**²

Energy levels of Hydrogen

Emission spectra

Problems with the Bohr Model

- • Only works for 1 electron systems $-$ E.g. H, He⁺, Li²⁺
- • Can not explain splitting of lines in ^a magnetic field Modified Bohr-Sommerfield (elliptical orbits - not satisfactory)
- •The model cannot interpret the emission spectra of complex atoms
- •• Electrons were found to exhibit wave-like properties
	- e.g. can be diffracted as they pass through ^a crystal (like x-rays)
	- considered as classical particles in Bohr model

Bohr model – calculating the energy and radius

- Energy Quantised angular momentum Combining the two 2 02 21 8*mv r* $\frac{Ze^2}{2}$ = -− πε $mvr = n\left(\frac{h}{2\pi}\right)$ (mvr) 2 $2 (mvr)^2$ $\rm 0$ 2 2 $2mr^2$ 8 1 *mr* $\frac{1}{r} = -\frac{1}{2}mv^2 = \frac{-(mvr)}{2mr^2}$ *Ze* − = $=-\frac{1}{2}mv^2 =$ −
- •Rearranging to give ^r

•

•

•

- 2^{n} $8\pi\varepsilon_0 r$ 2 2mr² $8\pi^2$ mr $\pi \varepsilon_0 r$ 2 2mr² 8 π $\left(- \, Z e^{2} \right)$ $\frac{n}{2m}$ $\sqrt{\frac{2n}{2m^2}}$ ² $-n^2h^2$ 8 $8\pi^2 m$ $-$ Ze n^2h *r r* − − = $\pi\varepsilon$ π^2 m $(-Ze^2)$ πmZe^2 $\rm 0$ $2, 2$ *mZe* n^2h *r* π $=\frac{n^2h^2\mathcal{E}_0}{2}$
- •• Substitute r into energy gives

2 0 2 1, 2 2 4 02 $8\pi\varepsilon_0 r$ $8n^2h^2\varepsilon_0$ *mZ e r* $\frac{Ze^2}{2} = -$

 $2₁$, 2

 n^2h

•Energy is dependent on n^2 and Z^2 (for one electron systems 2s and 2p) energies are the same)

Wave / particle duality

de Broglie (1923)

proposed that particles could have wave properties (wave/particle duality). Particles could have an associated wavelength (λ)

It was accepted that electromagnetic radiation can have wave and particle properties (photons)

$$
E=mc^2
$$
, $E=\frac{hc}{\lambda} \Rightarrow \lambda = \frac{h}{mc}$

No experimental at time.

1925 Davisson and Germer showed electrons could be diffracted according to Braggs Law (used for X-ray diffraction)

Numerically confirm de Broglie's equation

Introducing Wave Mechanics

- • For waves: it is impossible to determine the position and momentum of the electron simultaneously – Heisenberg 'Uncertainty principle'
- •• Use probability of finding an electron from ψ^2 (actually $\psi^* \psi$ – but functions we will deal with are real)

Where ψ is a solution of the Schrödinger equation (1927) and is a wavefunction.

The time-independent form of the Schrödinger equation for the hydrogen atom is and needs to be solved in 3-dimensional space:

Solutions of the Schrödinger equation for H

- • Schrödinger equation can only be solved exactly for one electron systems Solved by trial and error manipulations for more electrons
- • **Solutions of the equation naturally give rise to 3 quantum numbers describing ^a three dimensional space called an atomic orbital:**
- • *n, l, ^m* (and spin quantum number describing the electron s)
	- *n* ⁼principal quantum number, defines the orbital size with values 1 to ∞
	- $l =$ azimuthal or angular momentum quantum number, defines shape. For a given value of n, *l* has values 0 to (*n*-1).
	- m_l = magnetic quantum number, defines the orbital orientation. For a given value of *l*, m_l has values from +*l* through 0 to -*l*.