An Introduction To Molecular Orbital Theory

6 Lecture Course

Dr Sylvia Draper SNIAMS 2.5 smdraper@tcd.ie

Objectives – a fundamental understanding

Wave mechanics / Atomic orbitals

- The flaws in classical quantum mechanics (the Bohr Model) in the treatment of electrons
- Wave mechanics and the Schrödinger equation
- Representations of atomic orbitals including wave functions
- Electron densities and radial distribution functions
- Understanding shielding and penetration in terms of the energies of atomic orbitals

Bonding

- Revision of VSEPR and Hybridisation
- Linear combination of molecular orbitals (LCAO), bonding / antibonding
- Labelling of molecular orbitals (σ , π and g, u)
- Homonuclear diatomic MO diagrams
- MO diagrams for Inorganic Complexes

Lecture schedule

Lecture 1	Revision of Bohr model of atoms and an introduction to wave mechanics
Lecture 2	Schrödinger equation, atomic wavefunctions and radial distribution functions of s orbitals
Lecture 3	More complex wavefunctions and radial distribution functions and electron shielding
Lecture 4	Lewis bonding, Hybridisation, and molecular orbitals
Lecture 5	Labelling MO's. 1 st row homonuclear diatomics
Lecture 6	MO approach to more complex molecules and CO bonding in transition metals complexes

Information

- Book Sources: all titles listed here are available in the Hamilton Library
 - Chemical Bonding, M. J. Winter (Oxford Chemistry primer 15) Oxford Science Publications ISBN 0 198556942 – condensed text, excellent diagrams
 - Basic Inorganic Chemistry (Wiley) F.A.Cotton, G. Wilkinson, P.
 L. Gaus comprehensive text, very detailed on aufbau principle
 - Inorganic Chemistry (Prentice Hall) C. Housecroft, A. G. Sharpe
 comprehensive text with very accessible language. CD
 contains interactive energy diagrams

- Additional sources:

http://www.shef.ac.uk/chemistry/orbitron/ - plotting AO's