Reactions

2. Elimination

> Alkyl halide is treated with a base

Reactions

2. Elimination

> Often competes with nucleophilic substitution

Elimination

Mechanism

> Bimolecular

E2

Kinetics

> Rate determining step involves both reactants

rate =
$$k$$
 [base] [R-X]

> Second order kinetics

E2 = **E**limination, **2**nd order

E2

Zaitsev's Rule

> In some cases a number of elimination products are possible:

• the most substituted products dominate

E2

Stereochemistry

> Occurs in anti-periplanar geometry

Anti Periplanar

> :. Only one isomer is formed

$$H_{3}C$$
 Et
 $B:$
 $H_{3}C$
 Et
 Et

S_N2 and E2

tert-butoxide

- > S_N 2 favoured with
 - Low temp
 - 1° substrates
 - good n'phile eg. Br
- > E2 favoured with
 - High temp
 - 3° substrates
 - Strong/bulky base

H₃C H₃C

Nucleophilic Substitution

Alternative Mechanism

- \gt Called $S_N 1$
- > poor nucleophile, 3° substrate
- different kinetics and stereochemistry are observed

rate =
$$k [R-Br]$$

S_N1 Mechanism

Stereochemistry

• carbocation intermediate

• Mixture of enantiomers formed

Elimination

Alternative Mechanism

- > Called E1
- > poor base, 3° substrate
- > First order kinetics
- > mechanism again involves carbocation

rate =
$$k [R-Br]$$

12

E1 Mechanism

Mechanism

Slow

H₃C

H₃C

H₄C

E1

Stereochemistry

- > no requirement for anti-periplanar geometry
 - Substrate can lose a proton from any neighbouring position

Zaitsev's Rule

> most substituted alkene will dominate

SN1 and E1

- > Difficult to differentiate
 - Both involve carbocation intermediate

In general: ↓Temp = sub ↑Temp = elim

 \bullet $S_N \mathbf{1}$ and E1 much less useful than $S_N \mathbf{2}$ and E2

Organic Chemistry

Alkanes

Alkenes

Alkynes

Benzene

Structure

The Kekule Proposal

> possible constitutional isomers for benzene (C₆H₆)

Dewar

Stability

Stability of Benzene

- > unusually high stability
 - compare with alkenes

WHY? - Resonance and Aromaticity

Structure

Resonance theory of benzene

- > All bonds are equivalent!
- $> \pi$ electrons are <u>delocalised</u> around the ring

Resonance Theory

- 1.Resonance forms are imaginary
 - benzene has a single hybrid structure which combines the characteristics of both resonance forms

Resonance Theory

- 2. Resonance forms only differ in the position of π electrons
- 3. neither the position or hybridisation of the atoms change
- 4. The more resonance forms there are, the more stable the molecule.

We call these molecules resonance stabilised

Aromaticity

> special characteristic of certain resonance stabilised systems

Requirements

- > cyclic
- > planar
- > conjugated
 - overlapping p orbitals between all atoms
- \rightarrow (4n + 2) π electrons

Reactions Electrophilic Aromatic Substitution Benzene undergoes substitution NOT addition Br₂ Br never observed requires catalyst

Halogenation

The Intermediate Cation

> stabilised by **resonance**

Reactions

Electrophilic Aromatic Substitution

Mechanism

• Step 2

• Only variation is the Electrophile

28

Reactions

1. Halogenation

Bromination

benzene is treated with bromine and a catalyst (usually FeBr₃)

Halogenation

Bromination

> The catalyst 'activates' the electrophile (Br₂)

$$Br_2 + FeBr_3 \longrightarrow Br^+ + FeBr_4$$

Halogenation

Other Halogenations

Chlorine

$$\begin{array}{c|c}
\hline
 & Cl_2 \\
\hline
 & FeCl_3
\end{array}$$

Iodine

$$\frac{I_2}{\text{CuCl}_2}$$

Reactions

2. Nitration

> the electrophile is generated by reacting nitric acid with sulfuric acid

$$HNO_3 + H_2SO_4 \longrightarrow H_2O + HSO_4 + NO_2^{\dagger}$$

Reactions

mechanism

$$+NO_2$$
 $+NO_2$
 $-H^+$
 $+NO_2$

Electrophilic Aromatic substitution

Mechanism

Nitration

$$HNO_3 + H_2SO_4 \longrightarrow H_2O + HSO_4^- + NO_2^+$$
Nitronium ion

Substituted Benzenes

Substituent Effect on Reactivity

phenol is 1000 x more reactive than benzene nitrobenzene is 20,000,000 x less reactive than benzene

Substituent Effects

1. Ring Activating Substituents

- > donate electrons to the ring
 - Best activators have lone pairs. eg Phenol
 - Stabilises the arenium ion : it forms more readily
 - Faster reaction

Substituent Effects

2. Ring Deactivating

- > withdraw electrons from the ring
 - destabilise the arenium ion
 - Slower reaction

Phenol Acid Conjugate base is RESONANCE stabilised

Phenol Reactions 2. Nucleophile