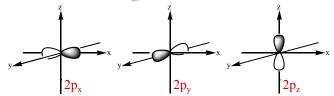
Atomic Structure


Electron Configuration

$$E \uparrow 3 \text{rd SHELL} \begin{cases} 3d & ---- & ---- \\ 3p & ---- & ---- \\ 3s & ---- & ---- \\ 2nd SHELL \begin{cases} 2p & ---x & ---y & ---z \\ 2s & ---- & ---- \\ 1st SHELL \end{cases}$$

$$1 \text{st SHELL} \begin{cases} 1s & ---- & ----- & ----- \\ 1s & ----- & ----- & ----- \\ 1st SHELL \end{cases}$$

Atomic Structure

Electron Configuration

2nd SHELL
$$\begin{cases} 2p & -x \\ 2s & -x \end{cases}$$

Atomic Structure

Ground State Configuration

- > Lowest energy orbitals fill first (*Aufbau principle*)
- > Each orbital can contain up to two electrons
 - electrons have opposite spins (*Pauli exclusion principle*)
- > Orbitals of equal energy fill evenly (*Hunds rule*)

Atomic Structure

Ground State Configuration

Eg. Sodium. 11 electrons

Na: $1s^2 2s^2 2p^6 3s^1$

Covalent Bonding

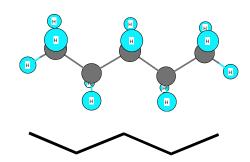
- > Sharing of electrons
 - Eg. Carbon is $1s^2 2s^2 2p^2$ (half full)

Н														
Li									В	С	N	0	F	
Na	Mg								Al	Si	Р	s	CI	
K		Ti	Cr	Mn			Cu	Zn				Se	Br	
						Pd				Sn			Т	
					Os			Hg						

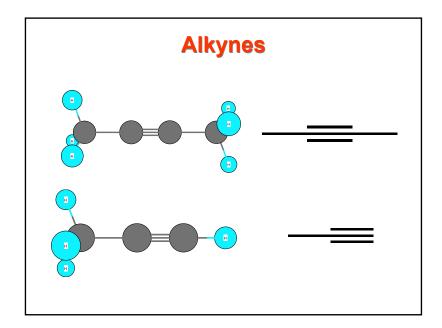
Covalent Bonding

Remember:

> A pair of bonding electrons is represented as a straight line



Lewis structure


Kekule structure

Organic Chemists Shorthand

Hydrogens are ignored and carbons are corners and terminals

Quick and convenient

Polar Covalent Bonds

continuum of possibilities between ionic and covalent based on 'degree of sharing'

 δ = 'just a little bit'
"partial charge", not a "full charge"

Polar Covalent Bonds Electronegativity H Li Na Mg K Ti Cr Mn Cu Zn Se Br

 \triangleright Eg. K=0.8 , H=2.1 , C=2.5 , O=3.5 , F=4.0

Polar Covalent Bonds

Examples

Polar Covalent Bonds

Dipole Moment

- > overall polarity of a molecule
 - sum of all individual polarities

Example

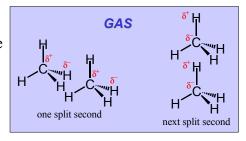
Intermolecular Bonding

Dipole-dipole

- > Molecules with dipole moment
- > Attraction of permanent partial charges
- > MEDIUM strength
 - Eg Propanone (acetone)

$$\delta^{+} \longrightarrow \delta^{-} \longrightarrow \delta^{+} \longrightarrow \delta^{-} \longrightarrow \delta^{-$$

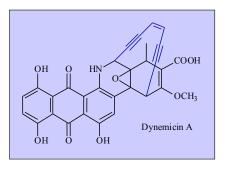
Intermolecular Bonding


Hydrogen Bonding

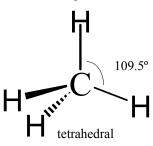
- > Strong form of dipole-dipole interaction
- > Require H bonded to highly electronegative atom (N, O or Halogen)
 - Eg. Ethanol

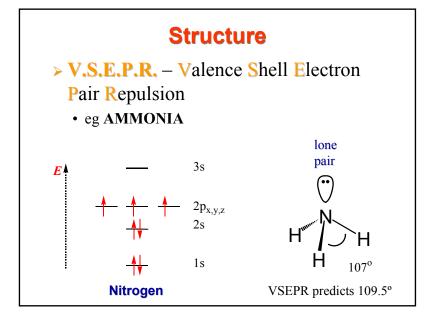
Intermolecular Bonding

Van der Waals forces


- > Non polar molecules
- > 'Instantaneous' dipole arises due to electrons random movements in atoms
- > WEAK
 - Eg. Methane

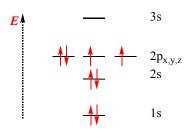
Structures in 3D!!!


Alkynes as Pharmaceuticals


> anti-cancer compounds

Structure

- > V.S.E.P.R. Valence Shell Electron Pair Repulsion
 - Useful for predicting structure
 - Electron pairs repel
 - Shape reflects this. eg METHANE



> V.S.E.P.R. – Valence Shell Electron

Pair Repulsion

• eg WATER

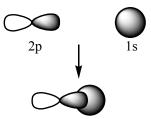
Oxygen

lone pairs

VSEPR predicts 109.5°

Structure

- > V.S.E.P.R. Valence Shell Electron Pair Repulsion
 - Multiple bonds

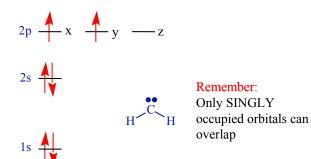

H : C !! C : H

VSEPR predicts 120°

Covalent Bonding

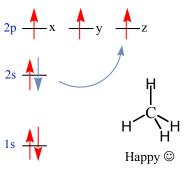
Combining Atomic orbitals

- > Sharing of electrons requires orbital overlap
- <u>singly occupied</u> atomic orbitals of individual atoms overlap


Hybridisation

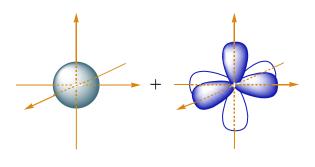
Hybrid Orbitals

- > Carbon 're-organises' its orbitals for covalent bonding
- > New orbitals derived from a mathematic combination of s and p atomic orbitals
- > Why does it bother?

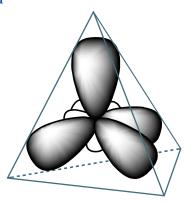

Hybridisation

> Electron configuration of carbon:

Hybridisation


> carbon 'promotes' a 2s electron to the 2p_z orbital

Not quite this simple!


Hybridisation

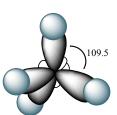
> one s and three p orbitals hybridise to give four sp³ orbitals

Hybridisation

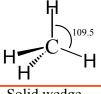
> one s and three p orbitals hybridise to give four sp³ orbitals

Hydridisation

Why?

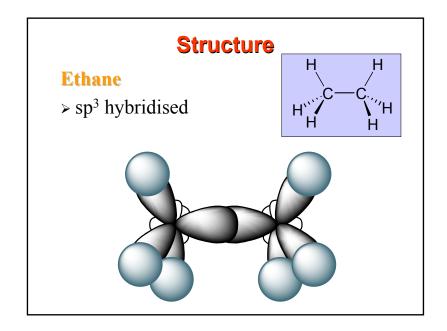

> sp³ orbitals allow better overlap and form stronger bonds

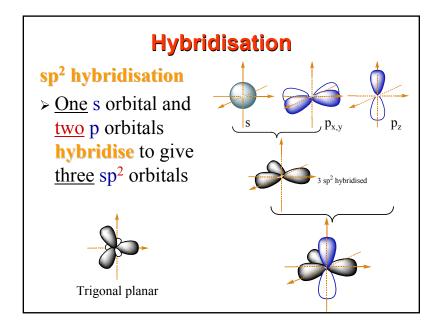
(stronger bonds = more stable compounds)

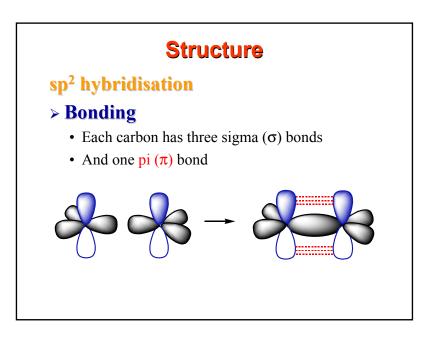

> the concept of **hybridisation** also explains the **structure** of carbon based molecules

Structure

- > sp³ hybridised carbon based molecules are **TETRAHEDRAL**.
- > New single bonds are called sigma bonds
- **▶** Bond angles 109.5°

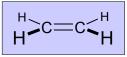

sp³ hybridised

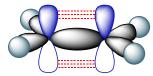



Solid wedge (towards you)

Dashed wedge (away from you)

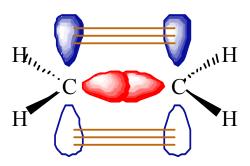
Ethane > sp³ hybridised • four sigma bonds for each carbon




Structure

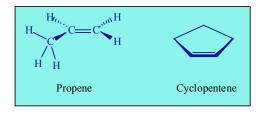
sp² hybridisation

- > Ethene
 - 5 sigma (σ) bonds
 - one pi (π) bond


Flat

Structure

Hybridisation


 \triangleright The double bond itself = one σ and one π bond

Alkenes

Introduction

- > Hydrocarbons containing one or more C-C double bond
- \gt General formula: C_nH_{2n}

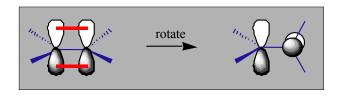
Alkenes

Degree of Unsaturation

- > Alkenes are said to be 'unsaturated'
 - double bonds = unsaturation
 - rings also = unsaturation

"Saturated"
$$C_{n}H_{2n+2}$$
"Unsaturated"
$$C_{n}H_{2n}$$

Alkenes


Degree of Unsaturation

- > Degree of unsaturation gives the number of double bonds and rings
 - Refered to as the number of 'double bond equivalents' (or DBEs)

Alkenes

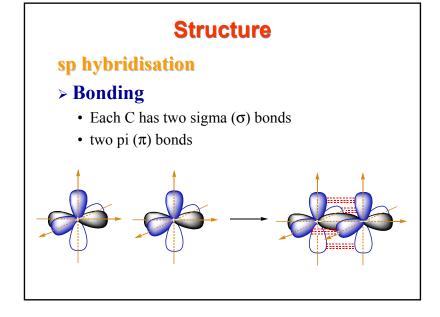
Stereoisomers

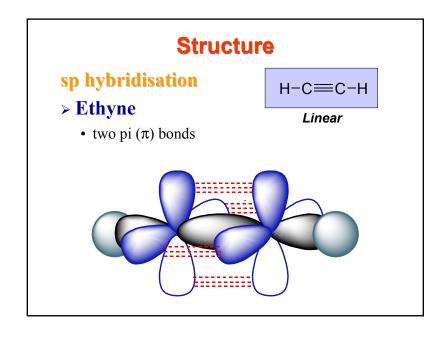
- > Rotation about C-C double bond would require breaking the π bond
- > Does not occur under normal conditions

Structure

Cis-Trans Isomerism

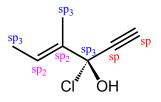
- > Restricted rotation gives rise to cis/trans isomerism
 - same side = cis(Z)
 - opposide sides = trans (E)




Stability

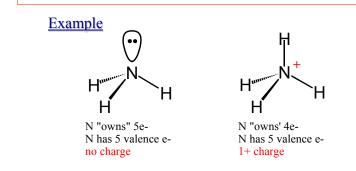
> Trans (E) form has steric strain minimized

$$H_3C$$
 $C=C$
 H
 H
 H
 H
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3


Hybridisation sp hybridisation > One s orbital and one p orbital hybridise to give two sp orbitals 2 sp hybridised

Hybridisation and structure

- > Hybridisation 'reshapes' atomic orbitals for better bonding
- $> sp^3$ (4 σ bonds)
 - Tetrahedral
 - Eg methane, ethane
- > sp² (3 σ +1 π bond)
 - Flat, planar
 - Eg. Ethene
- \Rightarrow sp $(2\sigma + 2\pi \text{ bond})$
 - Linear
 - Eg. ethyne



Reactions and Mechanisms

- > Acid Base
 - · Formal charges
 - Lowry-Bronsted theory
 - K_a and pK_a
 - Lewis theory
- > Reaction Types
 - Addition, substitution, elimination and rearrangement
- > Reaction Mechanisms

Formal Charges

> Compounds with an unusual number of e-(a covalent bond is two shared electrons, each atom "owns" one electron)

Acids and Bases

The Lowry-Bronsted Definition

- > an acid is a substance which donates a proton (H⁺)
- > a base is a substance which accepts a proton (H⁺)

Example

Acids and Bases

Acidity Constant (K_a)

- > acids differ in their H⁺ donating ability
- > measured based on their ability to donate H⁺ to water

$$H-A + H_2O \implies A^- + H_3O^+$$

position of the eq. relates to acid strength
 equilibrium favors the rhs ⇒ strong acid
 equilibrium favors the lhs ⇒ weak acid

Acids and Bases

> quantified by measuring the eq. constant

$$H-A + H_2O \implies A^- + H_3O^+$$

$$K_{eq} = \frac{[H_3O^+][A]}{[HA][H_2O]}$$

$$K_a = \frac{[H_3O^{'}][A^{'}]}{[HA]}$$

 \rightarrow often expressed as pK_a (= -log K_a)

Acids and Bases								
Relative Acid St	Relative Acid Strengths							
Acid	pK _a		K _a					
CH ₃ CH ₂ OH	16.0		10-16					
H_2O	15.7		10-15.7					
CH ₃ COOH	4.8		10-4.8					
HNO_3	-1.3	increasing	101.3					

-7.0

HC1

 10^{7}

strength

Acids and Bases

The Lewis Definition

- > a lewis acid is an electron pair acceptor.
- > a lewis base is an electron pair <u>donor</u>. Example

$$H^+ + : NH_3 \longrightarrow H^- NH_3$$
lewis acid lewis base

Acids and Bases

Lewis acids require a unfilled low energy orbital

>Lewis bases require a lone pair of electrons

$$CH_3$$
 H
 CH_3
 CH_3
 H
 H
 H