## **Chemistry for Health Sciences**

2007



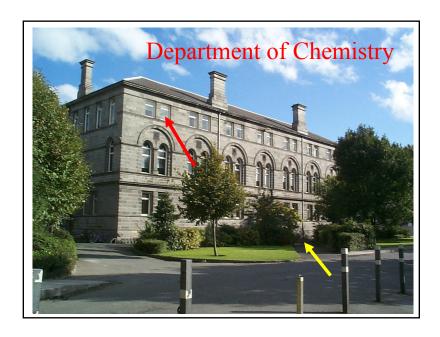
#### These notes can be found on:

http://www.tcd.ie/Chemistry/Peo ple/gunnlaugsson/resources.php

## **Organisation**

#### Michaelmas term

- > Organic Chemistry
  - Me! Prof. Thorfinnur Gunnlaugsson
    - 5 weeks (almost!)
- > Physical Chemistry
  - Prof. John Corish
  - Dr. Dónall Macdónaill
    - -4 weeks


## **Organisation**

#### **Lecturer:**

- Professor Thorfinnur Gunnlaugsson.
  - Room: 2.4
  - E-mail: gunnlaut@tcd.ie
  - Phone: 608 3459

#### **Textbooks:**

- Organic Chemistry: A Short Course
  - by H. Hart or McMurray
- Organic Chemistry. 8th Ed
  - by T. W. Solomons
- Organic Chemistry
  - by Clayden, Greeves, Warren and Wothers



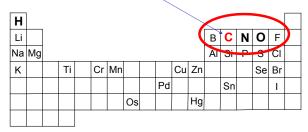
## **Organisation**

#### **Overview**

- > Introduction
  - Simple functional groups
  - Drawing organic structures
  - Nomenclature of Organic chemistry
- > Bonding
  - Intramolecular
    - Ionic bonds, covalent bonds (hybridisation)
  - Intermolecular
    - Hydrogen bonding, Dipole-dipole interactions

## **Organisation**

#### **Overview**


- > Alkanes, Alkenes, Alkynes and Benzene
- > Halogen Compounds, Alcohols,
  - Stereochemistry
  - Isomers, chirality
- > Phenols, Ethers, Amines

#### **Duration**

> 4-5 weeks

#### Introduction

- > Deals with compounds in which carbon (C) is the principle element
- > Not whole periodic table

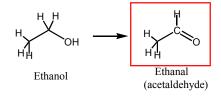


#### Introduction

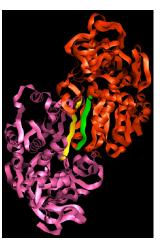
#### What is Organic Chemistry?

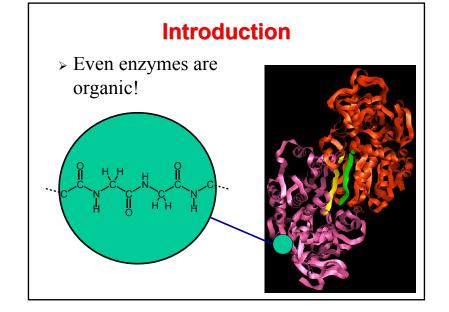
- Chemistry:
  - Small or large assembly of covalently liked atoms where carbon and hydrogen dominate! *eg.* Alcohols, small drugs *etc*.
- Biology:
  - The living organisms: *eg.* Cells, plants and animals
- Biochemistry:
  - The chemistry of life: *eg*. Enzymes and their role, DNA, Carbohyhdrates, *etc*.

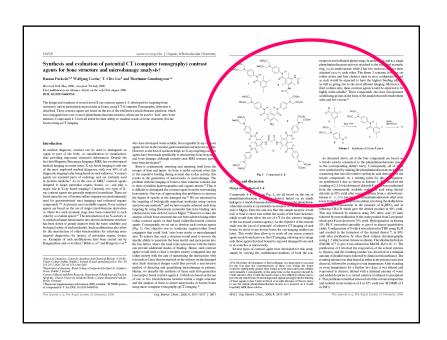
#### Introduction

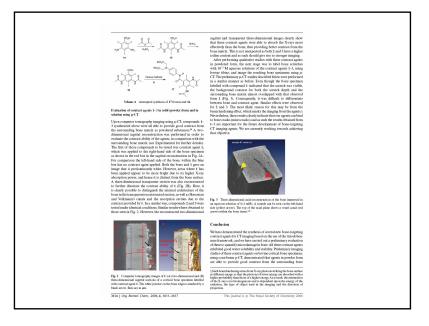

#### **Organic Chemistry**

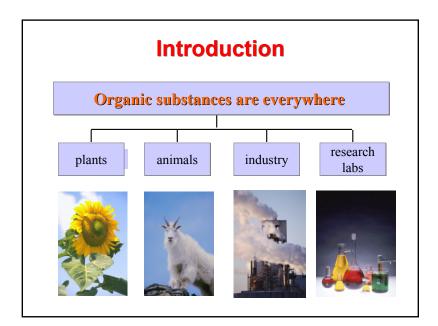
> May/may not involve natural process





- Organic chemists use REAGENTS / CATALYSTS in SYNTHESIS, employing solvents, heat, pressure, etc.
- Nature uses ENZYME, cofactors, etc.



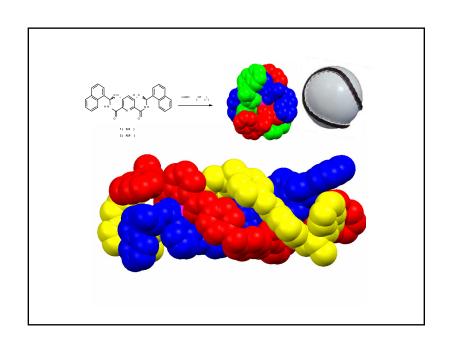



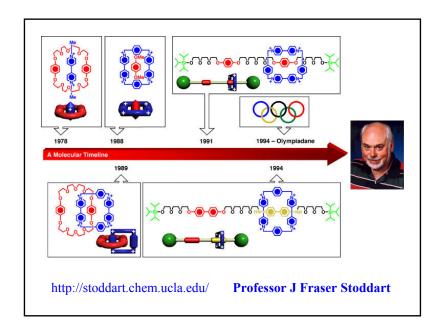


- > Nature uses ADH
- > Organic chemist uses:
  - Oxidising agent
  - $H_2O_2$ ,  $HNO_3$ , etc.

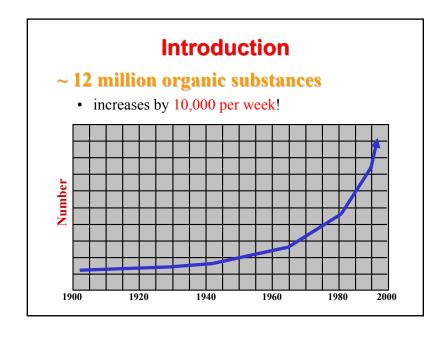








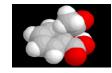


## Introduction

## **Organic Chemistry**

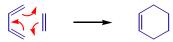
- > Many branches
  - Medicinal and pharmaceutical chemistry
  - Perfume and Food chemistry
  - Synthesis
  - Mechanistic
  - Natural product chemistry
  - Polymers
  - Supramolecular!








# 


## **Aims of Course**

#### To understand ....

- > Structures and shapes
  - BONDING



- > Basic reaction mechanisms
  - HOW SHAPES ARE CREATED



#### **The Basics**

## **Drawing Chemicals**

- Molecular Formula
- Condensed Structural Formula
- Lewis Forms
- Kekule Structure
- Skeletal Structure

#### Nomenclature

- Functional Groups
- Examples

## Molecular Formula / Drawing Structures

## **Drawing Chemicals**

#### **Molecular Formula**

- Actual number and type of atoms
- eg. Ethanol =  $C_2H_6O$
- eg. Dimethyl Ether =  $C_2H_6O$

#### **Condensed Structural Formula**

- Shows which way atoms are <u>bonded/connected</u>, but doesn't require all bonds to be drawn
- eg. Ethanol =  $CH_3CH_2OH$
- eg. Dimethyl Ether =  $CH_3OCH_3$

#### **Drawing Chemicals**

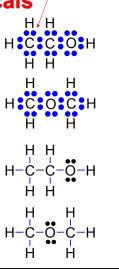
#### Valence shell!

- We know that eight electrons in –an electron octet- in the outermost shell, or valence shell, impart special stability to the noble-gas elements: Neon 2+8, Argon (2+8+8) etc.
- These valence electrons are the one that participate in bonding.
- Methane is one of these molecules that forms an octet. Carbon has 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>3</sup> electrons and needs 4 more to form the octate. Hydrogen has 1s<sup>1</sup>, *i.e.* we need four of these:

CH<sub>4</sub> is methane!

## **Drawing Chemicals**

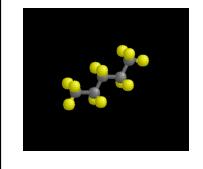
#### **Structural Formula**


#### **Lewis Structure**

• Dots are used to represent all valence electrons

#### **Kekule Structure**

- Dots represent nonbonding valence electrons (not used e<sup>-</sup>), or lone-pair electrons! *e.g.* NH<sub>3</sub>!!
- Lines represent bonding valence electrons


Example: CH<sub>3</sub>Cl (Chloromethane)



8 max!!

## **Drawing Structures**

> Structures in Reality!



## **Drawing Chemicals**

#### **Skeletal Structure**

- The carbon backbone is represented by a zig-zag line (reflects reality)
- All hydrogens attached to the carbon backbone are neglected (convenient and fast)
- Carbon atoms are the corners and ends
- Important for drawing larger chemicals and highlighting <u>functional groups</u>



## **Drawing Chemicals**

#### **Guidelines**

- Realistic
- Economical!

• Clear

**Introduced** bond angles

**Ethanol, Ethan-2-ol** 

## **Functional Groups**

#### **Definition**

> An <u>atom or group</u> of atoms that is part of a larger molecule and that has a characteristic reactivity

Ethane

Ethanol

## **Functional Groups**

## **Hydrocarbons**

## **Functional Groups**

#### **Hydrocarbon Derivatives**

• R is chemists shorthand for 'alkyl'

eg. 
$$R = ethyl = HH$$

R—Cl

Alkyl Halides

eg.  $HH$ 

LH

Alkyl Halides

## **Functional Groups**

## Hydrocarbon Derivatives cont.

- >Alcohols R—OH
- >**Ethers** R—O—R
- **≻Amines** R—NH<sub>2</sub>
- >Phenols

## **Functional Groups**

## Hydrocarbon Derivatives cont.

## **Functional Groups**

#### **Importance**

> Determine chemical behaviour

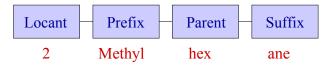
## **Naming Chemicals/Structures**

## **Naming Chemicals**

## **Overview (IUPAC system)**

- > Names of chemicals have 4 main parts:
  - <u>Parent name</u>: describes the main **carbon** section of the molecule.
  - <u>Suffix</u>: identifies the principle **functional group**
  - <u>Prefix</u>: identifies the **substituents** on the main chain or ring
  - <u>Locants</u>: shows where the substituents are **located**

## **Naming Chemicals**


#### **Common Parent and Substituent Names**

| Number of Carbons | Parent Name | Substituent Name |
|-------------------|-------------|------------------|
| 1                 | methane     | methyl           |
| 2                 | ethane      | ethyl            |
| 3                 | propane     | propyl           |
| 4                 | butane      | butyl            |
| 5                 | pentane     | pentyl           |
| 6                 | hexane      | hexyl            |
| 7                 | heptane     | heptyl           |
| 8                 | octane      | octyl            |
| 9                 | nonane      | nonyl            |
| 10                | decane      | decyl            |

## **Naming Chemicals**

#### **Overview**

> Names of chemicals have 4 main parts:



eg. 2-Methylhexane

locant: 2prefix: methyl
parent: hex
suffix: ane

#### Rules

- 1. Name the Parent
  - Identify the longest carbon chain containing the most important functional group
- 2. Add the Suffix
  - Identify the most important functional group and add the appropriate suffix

## **Naming Chemicals**

- 4. Include the Locants
- > Specify substituent location
  - Number the parent chain **from the end closest** to the functional group
  - Different substituents can have the same number if they are attached to the same carbon
  - Use hyphens to separate no. and letters
  - Use commas to separate no. form no.

## **Naming Chemicals**

- 3. Add the Prefix
- > Name any substituents
  - Substituents are arranged in alphabetical order
  - If more than one group is present use 'di', 'tri', 'tetra', 'penta', 'hexa', 'hepta', 'octa', 'nona' or 'deca' before the group

Note: these additional prefixes do not count when alphabetising the substituents

## **Naming Chemicals**

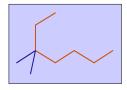
#### **Alkanes**

> name the following alkane:

#### **Alkanes**

Step 1: Name the Parent Chain

> find the longest continuous chain


- > assign appropriate parent name
  - → hept

## **Naming Chemicals**

#### **Alkanes**

Step 4: Include the Locants

- > Include the position of attachment
  - use the lowest possible option
- > 3,3-Dimethylheptane
  - Not 5,5-Dimethylheptane



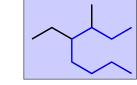
## **Naming Chemicals**

#### **Alkanes**

Step 2: Add the Suffix

- > The chemical is an alkane
  - → hept<u>ane</u>




#### Step 3: Add the Prefix

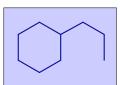
- > Describe any substituents attached to the parent chain
  - → <u>Dimethyl</u>heptane

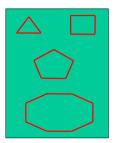
## **Naming Chemicals**

#### **Alkanes**

- 1. Name the Parent Chain
  - oct
- 2. Add the Suffix
  - octane




Example 2:


- 3. Add the Prefix
  - Ethylmethyloctane
- 4. Include the Locant
  - 4-Ethyl-3-methyloctane

## **Naming Cyclic Chemicals**

#### **Cycloalkanes**

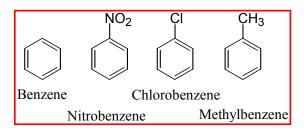
- 1. Name the Parent
  - cyclohex
- 2. Add the Suffix
  - cyclohexane
- 3. Add the Prefix
  - propylcyclohexane
- 4. Include the Locant
  - 1-propylcyclohexane





## **Naming Chemicals**

#### **Alkenes and Alkynes**


- 1. Name the Parent Chain (must include functional group)
  - hept
- 2. Add the Suffix
  - heptene
- 3. Add the Prefixes
  - methylpropylheptene
- 4. Include the Locants
  - 6-methyl-3-propylhept-2-ene

## **Naming Chemicals**

#### **Aromatic Hydrocarbons**

'Substituent name' followed by 'Benzene'

eg.



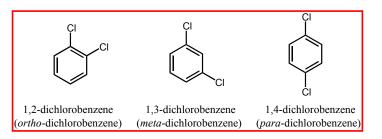
## **Naming Chemicals**

#### **Aromatic Hydrocarbons**

 A large number of aromatic hydrocarbons have *non-systematic* (common) names

eg.

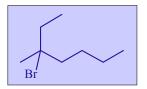







Toluene Phenol Aniline (Methylbenzene) (Hydroxybenzene) (Aminobenzene)

#### **Aromatic Hydrocarbons**

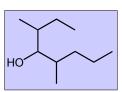

- When there is >1 substituent, locants are used to specify their relative position
- ortho-, meta- and para- maybe used in place of numerical locants

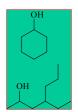


## **Naming Chemicals**

#### **Halogen Compounds**

- > As for alkanes
- > The halogen is named as a substituent with an 'o' (eg. bromine becomes bromo)



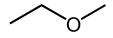


→ 3-Bromo-3-methylheptane

## **Naming Chemicals**

#### **Alcohols**

- 1. Name the Parent Chain
  - octane
- 2. Remove 'e' and add the Suffix 'ol' to alkane name
  - octanol
- 3. Add the Prefix
  - Dimethyloctanol
- 4. Include the Locants
  - 3,5-Dimethyloctan-4-ol

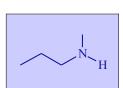





You try these!

## **Naming Chemicals**

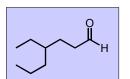
#### **Ethers**


- > substituents are listed alphabetically followed by the word 'ether'
  - eg.



→ Ethyl methyl ether

#### **Amines**


- 1. Name the Parent Chain as substituent
  - propyl
- 2. Add the Suffix
  - propylamine
- 3. Add the Prefix
  - Methylpropylamine
- 4. Include the Locant
  - *N*-Methylpropylamine



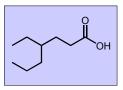
## **Naming Chemicals**

#### **Aldehydes**

- 1. Name the Parent Chain
  - heptane
- 2. Remove 'e' and add Suffix 'al' to alkane
  - heptanal
- 3. Add the Prefix
  - Ethylheptanal
- 4. Include the Locant
  - 4-Ethylheptanal

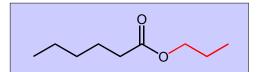


## **Naming Chemicals**


#### **Ketones**

- 1. Name the Parent Chain
  - heptane
- 2. Remove 'e' and add Suffix 'one' to alkane
  - heptanone
- 3. Add the Prefix
  - Ethylheptanone
- 4. Include the Locants
  - 4-Ethylheptan-2-one

## **Naming Chemicals**


#### **Carboxylic Acids**

- 1. Name the Parent Chain
  - heptane
- 2. Remove 'e' and add Suffix 'oic acid' to alkane
  - heptanoic acid
- 3. Add the Prefix
  - Ethylheptanoic acid
- 4. Include the Locant
  - 4-Ethylheptanoic acid



#### **Esters**

- 1. Parent:
  - Hexane
- 2. Remove 'e' and add 'ate':
  - Hexanate
- 3. Prefix: the other alkyl segment with a space:
  - propyl Hexanoate
- 4. Locants: Not required for this example

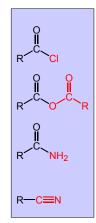


## **Naming Chemicals**

#### **Acid Chlorides**

• replace 'ic acid' with 'yl chloride'

#### **Anhydrides**


• replace 'acid' with 'anhydride'

#### **Amides**

• replace 'ic acid' with 'amide'

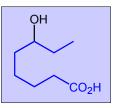
#### **Nitriles**

• replace 'ic acid' with 'nitrile'



## **Naming Chemicals**

#### >1 Functional Group


#### **Priority List**

- 1. Carboxylic acids 5. Amines
- 2. Aldehydes 6. Alkenes
- 3. Ketones 7. Alkynes
- 4. Alcohols 8. Alkanes

## **Naming Chemicals**

#### >1 Functional Group

- Identify Priority gp.
   Carboxylic acid, alcohol
- 2. Name parent and suffix as usual octanoic acid
- 3. prefix for alcohol substituent hydroxyoctanoic acid
- 4. Locants6-hydroxyoctanoic acid

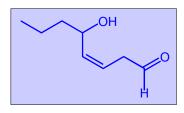


#### **Suffix and Prefix**

| Group    | suffix | prefix   |
|----------|--------|----------|
| aldehyde | -al    | formyl-  |
| ketone   | -one   | охо-     |
| alcohol  | -ol    | hydroxy- |
| amine    | -amine | amino-   |

**Naming Chemicals** 

#### **Suffix and Prefix**


- > Alkenes and alkynes
  - Specify location 'within' parent
  - Essentially as before!



## **Naming Chemicals**

#### **Further Example**

- 1. Priority alcohol aldehyde and alkene
- Parent + suffix oct, ene and al = octenal
- Substituents hydroxy
- 4. Locants 5-hydroxyoct-3-enal

