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Spin isomerism 

We shall consider the rotation of a homonuclear linear molecule, which 

includes not only homonuclear diatomic molecules like Cl2 etc. but all those with a 

centre of symmetry such as O=C=O and HCCH. 

 

The rigid rotor 

 If internal motions (vibrations) are neglected
1
, the rotation of a rod-like object 

(linear molecule) of length r can be monitored by means of the two angles  and .  

These are respectively the angles made by the object’s axis with the z direction and by 

the xy-projection of the axis with the x direction.  The quantities r,  and  constitute 

the spherical coordinates with which we are familiar.  The figure identifies  and  as 

being equivalent to angles of longitude
2
 and latitude respectively. 

     

   

 The system is equivalent to a pseudo-particle of mass  moving in a field-free 

environment (zero potential energy). In the Schrödinger equation H = E the 

Hamiltonian H for the system is     
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 We don’t say that vibrations of the atoms are supposed not to occur, only that they are so fast  (  

10
14 

Hz) compared with the molecule’s rotation (  10
10 

Hz) that the atoms can be taken as fixed at 

their mean positions during the molecule’s rotational time period. 
2
 The only difference is that geographical longitude is measured from the equator (the xy plane) 

whereas here  is measured from the z axis. 
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and the eigenfunction  is a function of the two angular variables:   (,).  (It 

does not depend on r as this is fixed)  Here  is the mass of the pseudo-particle 

(effective mass of the molecule) and r is its distance from the origin (molecular 

length).  The Hamiltonian is the result of using the three equations alongside the 

figure to transform the Laplacian operator 
2
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spherical coordinates. 

Since the variables are just the angles  and , our system is in a two-

dimensional space.  The solutions to this equation are known from the 19
th

 century 

when they were used to describe the vibrations of spheres.  Before presenting them, 

just notice what happens to the Hamiltonian in eq. (1) if  is constant at 90°.  The first 

term vanishes leaving 
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.  But this is the Hamiltonian for the rotation 

of a particle on a circle, a one dimensional problem, whose Schrödinger equation 

   Hm = Em m  

we solved in the SF course to give 

 





im
em

2

1
  and 

2

22

2 r

m
Em




  

We showed that the quantum number m takes values 0, 1, 2,  3, , defining 

quantized rotational energy levels. 

 Now here are the solutions to the two-dimensional problem defined by eq. (1).  

With a slight change of notation to customary ones for rotational systems the 

Schrödinger equation is 

   H ),(, 
JMJY  = EJ ),(, 

JMJY    (2) 

Since we are not going to solve the equation we have anticipated some of the results 

in the way chosen to write eqn. (2) 

1. The solutions are a set of mathematical functions called spherical harmonics 

),(, 
JMJY . 

2. These depend on a pair of quantum numbers J and MJ where J = 0, 1, 2, 3,  

and MJ = 0, 1, 2,  3,  

3. The energy eigenvalues, which are now given as 
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EJ = )1(
2

2

JJ
I


     (3)  

depend only on J (not MJ), so they are each (2J +1)-fold degenerate.  Eqn. (3), in 

which the factor 2r
2
 has been replaced by the moment of inertia I is the familiar one 

used to describe the rotational levels of a linear molecule. 

 

 

J = 3 
____________________

  7-fold degenerate (MJ = 3, 2, 1, 0, 1, 2, 3) 

 

 

J = 2 
____________________

  5-fold degenerate (MJ = 2, 1, 0, 1, 2) 

 

J = 1
____________________

   3-fold degenerate (MJ = 1, 0, 1) 

J = 0
____________________

  non-degenerate 

 

 

Here are some of the rotational wave functions 
JMJY , .  Their normalization factors 

have been omitted for simplicity. 

 Y0,0 = 1 

 

 Y1,+1 = sin  e
+i

 Y1,+1 + Y1,1 = sin  (e
+i

  + e
i

)  = 2 sin  cos   x 

 Y1,0  = cos             Y1,0  =    = cos    z 

 Y1,1 = sin  e
i 

Y1,+1  Y1,1 = sin  (e
+i

  + e
i

)  = 2i sin  sin   y 

 

 Y2,0  = 3cos
2
   1        3z

2
  r

2   

 Y2,1 = cos  sin  e
i    

    xz, yz  

 Y2,2 = sin
2
  e

2i   
     x

2
  y

2
, xy

 

 

They are spaced according to their J values, showing the 1, 3, 5,  … degeneracies 

within the J = 0, 1,  2,  … groups.  Again notice that if the rotation were confined to a 

plane ( = 90°) the functions reduce to the solutions e
im

 for a particle on a circle. 

 

Symmetry properties 

 Consider the result on the rotational functions of subjecting them to the 

operation i, which entails inverting the molecule through its centre.  This means 

carrying out the transformation (x, y, z)  (x, y, z).  In spherical coordinates that 

means (, )  (, +).  Conduct the transformation i on Y1,1 as an example: 
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i Y1,1 = i sin  e
i

 = sin() e
i(φ+π)

 = sin  e
i 

e
i  

= Y1,1 (1) = Y1,1 

 

The behaviour of Y1,1 to inversion shows that it is an odd function.  Performing this 

for each of the 
JMJY , functions gives the results 

i Y0,0 = Y0,0  

i Y1,0 = Y1,0   i Y1,1 = Y1,1  

i Y2,0 = Y2,0   i Y2,1 = Y2,1   i Y2,2 = Y2,2  

i Y3,0 = Y3,0   i Y3,1 = Y3,1   i Y3,2 = Y3,2   i Y3,3 = Y3,3  

 

The parities of the rotational wave functions (their symmetries with respect to 

inversion) alternate odd and even with successive J.  That means that the energy 

levels correspond to even rotational states for even J and to odd states for odd J. 

 We shall see the significance of this remark about the parities of the rotational 

states presently, but it does provide an explanation of one of the selection rules for 

transitions between the rotational states.  Recall that a transition is allowed between i 

and i+1 but forbidden between i and i+2.  The parities of the states shows why this 

is so.  The i / i+1 pair have different parities and so, because ‘x’ has odd parity, the 

integrand in the transition moment integral M
x
i,i+1  ∫ i  x i+1 d is even and M

x
i,i+1 

is non-zero.  In contrast, the i / i+2 pair have equal parities and so the integrand is 

even and M
x
i,i+1 is zero. 

 

 The parity characteristics of rotational states, as developed above, will be used 

to answer this question “If I were to interchange the positions of equivalent atoms 

in a molecule what effect would it have on the wave function?” 

 

Total wave function 

 A molecule or other assembly of particles may exhibit several types of motion.  

As well as rotating it might also be vibrating and its electrons would show a rich 

variety of quantized behaviour.  As well as the wave functions describing these 

motions the quantum behaviour of nuclear spin may also be of importance in 

Chemistry.  If you can think of any others, they can be included too, but the ones 

mentioned are those which will be relevant to the treatment that is to follow.  Whether 
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or not the component functions are independent of each other we can define a total 

wave function total as 

    total = rot  vib  el  ns   (4) 

 

Fermions and bosons 

 Of the various schemes used to classify particles according to some set of 

properties we consider what happens when you interchange two identical particles in 

an assembly of particles.   

 

1. The total wave function of the assembly changes sign.  Mathematically this 

can be expressed as 

(1, 2, 3, 4, 5, 6, ) = (1, 2, 3, 5, 4, 6, ) 

where the 5
th

 and 6
th

 identical particle has been interchanged.  Particle systems 

showing this behaviour obey Fermi-Dirac ststistics and are called fermions. 

 

2. The total wave function is unchanged by the switching of the particles, so 

(1, 2, 3, 4, 5, 6, ) = (1, 2, 3, 5, 4, 6, ) 

 Such particle systems obey Bose-Einstein statistics and are called bosons. 

 

       nucleus I             mI 

  
1
H  1/2                +

1/2, -
1/2  fermion 

  
2
H  1        +1, 0, -1  boson 

  
3
H  1/2                 +

1/2, -
1/2   fermion 

  
4
He  0               0   boson 

  
6
Li  1        +1, 0, -1   boson 

  
7
Li  3/2     +

3/2, +
1/2, -

1/2, -
3/2  fermion 

  
12

C  0               0  boson 

  
13

C  1/2                   +
1/2, -

1/2  fermion 

  
14

N  1          1, 0, -1  boson 

  
15

N  1/2                    +
1/2, -

1/2  fermion 

  
16

O  0               0  boson 

  
35

Cl  3/2  +3/2, +
1/2, -

1/2, -
3/2 fermion 

  
37

Cl  3/2  +3/2, +
1/2, -

1/2, -
3/2 fermion 

 

                    S             ms 

  electron ½                +
1/2, -

1/2   fermion 
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 It is easy to predict which particles fall into which category.  If a particle (or 

an atomic nucleus) has a spin quantum number which is an integer, i.e. has one of the 

values 0, 1, 2, 3,  it is a boson.  If it has half-integral spin 
1
/2 , 

3
/2 , 

5
/2 , 

7
/2 ,  then 

it is a fermion.  The above table is from the NMR course hand-out to which the 

electron has been added as an honorary member as it has a spin but is not a nucleus. 

 

What happens when identical particles get interchanged? 

 Of the component wave functions that go to make up the total wave function 

expressed by eqn. (4), which ones will be affected by the ‘switching’ of identical 

particles?  The vibrational and electronic functions vib and el are not affected 

provided these functions describe the ground states in each case
3
. 

 We are left with rot and ns which are the two that will be used to make the 

total wave function: 

 

     = rot  ns     (5) 

 

Spin wave functions 

The symmetry behaviour of rot (alias 
JMJY , ) for different J has just been dealt 

with, but what about the nuclear spin function ns?  We answer by going straight to a 

molecular example, H2.  This molecule contains two protons each of which has a spin 

quantum number I = ½.  Just as an electron has spin S = ½ and two spin states defined 

by ms = ½, protons have spin states mI  = ½.  Quantum states are characterized by 

wave functions, and recalling our discussion of the excited singlet and triplet states of 

the helium atom, we call the two spin state functions  and  just as for electrons.  As 

in the helium problem, the spin function for two particles are written as products of 

the one-particle functions  and .  Writing (1) and (1) for the spin wave functions 

of the proton in hydrogen atom 1 and similarly for the spin functions of proton 2 then 

the nuclear spin wave functions of the H2 molecule must be one of the following: 

+ = (1)(2)    (I = 1 MI = +1) 

                                                 
3
 Recall that the ground vibrational state n = 0 (that accommodates the vast majority of molecules at 

normal temperatures) is described by a symmetric harmonic oscillator function.  You may also 

remember that the ground state electronic wave function of some molecules considered in our quantum 

chemical course are totally symmetric, like 0 in pentalene (A1g) when we were considering allowed 

transitions between proposed states.  Things are not always as simple as the rather cavalier discussion 

given here pretends, but the reasoning is correct for the ground electronic and vibrational states of most 

molecules.  
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 )2()1()2()1(
2

1
   (I = 1 MI = 0) 

+ = (1)(2)     (I = 1 MI = 1) 

 

 )2()1()2()1(
2

1
    (I = 0 MI = 0) 

 

These are the possible ns nuclear spin wave functions needed in eqn. (5).  The three 

+ functions describe a ‘proton spin triplet’ and  is a ‘proton spin singlet’.  Notice 

that the + functions are symmetric to interchange of protons 1 and 2 while  is 

antisymmetric to the interchange.  But it is the total wave function  that enjoys the 

property of being invariantly symmetric or antisymmetric, and  is a product of two 

parts each of which may be either symmetric or antisymmetric.   

 A proton is a fermion, so the total wave function  of the H2 molecule must 

be antisymmetric.  In order to ensure this the two functions forming the product  = 

rot  ns must have different parities – one must be symmetric, the other 

antisymmetric.  If the H2 molecule is in a rotational state defined by J = 0, 2, 4, 6,  

its rotational function is even (symmetric) and so it requires the antisymmetric spin 

function .  If it is in a state with J = 1, 3, 5,  then its spin function must be one of 

the + set.  An important point is this:   

If the spins of the H2  protons are unpaired, forming a triplet state  

(ortho hydrogen) then the even-J rotational levels do not exist.  

 

If the spins of the H2  protons are paired, forming a singlet state  

(para hydrogen) then the odd-J rotational levels do not exist. 

 

 

Thus there are two species of hydrogen molecule, which are called ortho hydrogen 

and para hydrogen and they are defined in the two last statements. Their existence is 

an example of the subject of spin isomerism.  We now see that the earlier rotational 

energy diagram which is commonly used to describe the rotation of linear molecules 

is wrong for H2, and must be replaced by one in which half the rotational levels are 

missing.  

The rotational energy levels in the hydrogen molecule 
           (Numbers in brackets indicate the degeneracy of the J level) 
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J = 5 
____________________(11)    

 

 

J = 4 
 

_______________(9)  

 

 

J = 3 
____________________(7)

    

  

 

J = 2 
 ______________________(5)

 

  

J = 1
____________________ (3)

      

J = 0
 

_______________(1)      

 

  odd rot states      even rot states 

 

  ortho-H2           para-H2 

     (proton spin triplet)        (proton spin singlet) 

 

spin functions:     spin functions: 

(1)(2)  mI = +1 

(1)(2) + (2)(1) mI = 0    (1)(2)  (2)(1) mI = 0   

(1)(2)  mI = 1 

 Itot = 1      Itot = 0 

 

 

Experimental aspects 

1. Spectroscopy 

 With half their rotational levels missing compared with ‘normal’ molecules, 

you might expect to find that molecules with spin isomerism should exhibit anomalies 

in some particular property.  (Historically of course it was the anomalies that were 

first discovered, and theory was then invoked to explain them.) 

 Spectroscopic transitions between rotational  levels occur in the microwave 

region of the spectrum, but such methods cannot be deployed here for the obvious 

reasons that  

(1) in microwave spectroscopy, a molecule giving showing pure rotational 

transitions must have a permanent electric dipole moment which cannot be 

the case if the molecule has a centre of symmetry,    and 
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(2) sets of levels for which alternate Js are missing cannot give rise to the 

selection rule in microwave spectroscopy, J = 1. 

However there are spectroscopsies for which a permanent molecular dipole moment is 

not required (recall that for an IR vibrational mode to be active it is necessary only 

that it should have an oscillating dipole moment).   Electronic transitions don’t even 

need that, and the H2 molecule does have a UV spectrum. 

 Electronic energy levels are split by the molecule’s vibration, and for a 

gaseous sample the vibrational levels may be split into rotational levels.  The UV 

spectrum of H2 does indeed show clear evidence of these missing levels, and can be 

interpreted as a superposition of molecules for which J = 0, 2, 4, 6,  and for which J 

= 1, 3, 5, 7,   The H2 species giving rise to the superposition can be distinguished 

from their intensities.  Except at low temperatures the rotational states would 

accommodate roughly the same numbers of ortho and para H2.  But when we come to 

take account of spin it must be considered the components of the spin triplet takes 

three times as many molecules as the singlet:  accordingly at normal temperatures 

there will be three times as many ortho molecules as para, and the lines originating in 

ortho-H2 will show three times the intensity of the para-H2 lines.  As a result the 

rotational lines will alternate with a 1:3 intensity pattern as shown in the figure
4
: 

 

 Raman spectroscopy does not involve electric dipole transitions.  Thus no 

electric dipole moment is required; the principal selection rule here is J = 2, and so 

Raman spectra also reveal the anomalous rotational energy levels of H2 and give rise 

                                                 
4
 You should remember that even for molecules that don’t show spin-rotation effects the rotational 

lines do not have equal intensities.  The amplitudes build up to a maximum and then decrease because 

of J-degeneracy and the Boltzmann effects.  In the interests of simplicity this has been neglected here. 
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to the 3:1 alternating intensity pattern.  It is easy to see that the rotational lines in D2 

and N2 also have alternating intensities, for which the ratio is 2:1. 

 

 

The rotational energy levels in a boson molecule (e.g. D2, 
14

N2 or CO2) 
 

J = 5 
____________________                ------- J = 5 

 

 

J = 4 
 

_______________       
-------- J = 4

 

 

 

J = 3 
____________________

            
-------- J = 3

 

  

 

J = 2 
 ______________________         -------- J = 2

 

  

J = 1
____________________ 

             -------
 
J = 1 

J = 0
 

_______________               -------
 
J = 0 

 

         I = 1      I = 2, 0        ‘normal’ 
(3 antisymmetric spin wave functions)    (6 symmetric spin wave functions)       diatomics 

 

Abundance ratio at normal temperatures:  1     :      2 

 

 In molecules with zero spin, such as 
16

O2 or CO2 where I = 0 for each 
16

O , in 

order for the whole molecular wave function to be symmetric, the rotational functions 

can only be even, and so the energy structure looks like this:    

  

         (or CO2) 
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2. Thermodynamics 

 Thermodynamic functions such as Heat capacity, Enthalpy, Entropy and Free 

Energy can be expressed in analytic forms involving partition functions q.  For 

example the Helmholtz free energy F of a system of N molecules at a temperature T is 

given by  1lnln  NqNkTF .   The molecular partition function q depends on 

the type of motion being considered but if the molecule has a set of quantized energy 

levels ε1, ε2, ε3,  then it is expressed as kTkT
eeq

// 21  
  +

kT
e

/3  +   Since q 

and therefore the system’s derived thermodynamic functions depend on the energy 

levels ε1, ε2, ε3,  the variation of these levels between the spin spin isomers (ortho 

and para H2) leads to distinguishable thermodynamic properties.  

One of these properties is that concerning phase transition temperatures: the 

hydrogen molecule is so mobile that the rotational states are said to persist even in the 

liquid and solid states, and slight differences in the freezing points have been 

registered for the spin isomers  13.94 K for ortho and 13.81 K for para. 

 

3. Separation 

Since it has just been argued that the ortho and para spin isomers can be 

distinguished by their thermodynamics, it might be possible to devise a way to 

separate them using these properties.  One obvious way is to use their differing 

freezing and boiling points.  Another is to use their different retention times on 

alumina;  if H2 gas were passed down an alumina-packed column this gas 

chromatographic method allows the separation of the ortho and para species. 

If a sample of hydrogen gas were to be cooled to very low temperatures, 

nearly all the ortho species would occupy the J = 1 level while almost all the para 

would go into J = 0.  So ortho-H2 has zero point energy but not para-H2, which can 

have zero rotational energy. At low temperatures, therefore, para has lower energy 

than ortho, and so as an exothermic change a conversion from ortho to para would be 

energetically favoured.  But a mechanism for the conversion would be required.  How 

could a H2 molecule change from an S=1 proton spin triplet to an S=0 proton singlet? 

The answer is to use whatever changes particle spin. This is what happens in 

NMR spectroscopy, which you recall measures the energy absorbed when a proton (or 

other nucleus) changes its spin from mI = +½ to mI = ½.  The transition is induced by 

supplying radiation at the appropriate frequency (in this case in the radiofrequency 
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range ~10
8
 Hz).  In proton magnetic resonance this works because the proton’s spin 

magnetic moment couples with the radiation’s oscillating magnetic field.  The 

oscillating field induces transitions between the mI = ±½ states in either direction.   

If an oscillating magnetic field at the appropriate frequency were applied to a 

H2 spin isomer it could be converted into the other isomer.  But it is not necessary to 

do this.  Spin-flip transitions may occur independently of applied radiation due mainly 

to background magnetic fields arising from proton spin dipoles in other H2 molecules.  

These fields fluctuate as a result of H2 molecular collisions.  As random processes the 

frequencies of the fluctuations will be very wide, but will probably contain a 

component at the ‘resonance’ value, and will therefore be instrumental in inducing the 

mI = ±½ state transitions.  Again, the transitions may go in either direction, but as a 

transition from a higher to a lower energy state is more probable than the other way 

round, H2(ortho) → H2(para) is favoured over the reverse reaction, and eventually 

(months) our low-temperature H2 sample would end up pure para. 

But there are speedier methods.  One is to use a catalyst for the dissociation of 

H2 into H atoms and reassembly to H2.  At very low temperatures thermodynamics 

favours the H + H → H2(para) over H + H → H2(ortho) as it is more exothermic.  

Another way is to add a small paramagnetic gaseous impurity to the H2 sample.  As 

the paramagnetic molecule collides with H2 molecules, and if the frequency spread of 

the fluctuating magnetic fields thereby generated contain a component at the right 

frequency, spins would be flipped and the sample would go over into para hydrogen.  

Then again, rather than add a gaseous impurity, if the vessel containing the hydrogen 

sample were glass containing (as glass often does) paramagnetic ions like Fe
3+

, the 

required spin flips would still occur  this time because of the fluctuating magnetic 

fields experienced by the H2 molecules as they collide with a range of speeds and 

directions with the walls of the container. 

 One purpose in being able to prepare pure spin rotamers is to provide an 

experimental means to study the kinetics of the reaction H2 + H  =   H + H2 which has 

been the subject of many theoretical investigations.  Its progress will be a line on the 

potential energy surface of HaHbHc shown below where it is assumed that the H3 

reaction intermediate is linear.  The reaction will follow some pathway from the 

(HaHb + Hc) valley, over the saddle-point energy barrier to the symmetrically 

equivalent (Ha + HbHc) valley. A gaseous system of pure para H2 and atomic 
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hydrogen will undergo a scission of HH bonds of the para H2 reactant molecules to 

form H2 product molecules which, when equilibrium is reached, will be in the ratio of 

ortho : para = 3 : 1.  Measuring the proportion of ortho and para molecules in the 

system allows the progress of the reaction to be monitored, and a measurement of the 

rate constant k.  Measuring k as a function of temperature and using the Arrhenius 

equation kTEAek /  enables the activation energy E  to be calculated from the 

plot of ln k vs 1/T. 

 

    
 

 

 

The broken line is the lowest-energy trajectory (reaction coordinate) in between 

(HaHb + Hc) and (Ha + HbHc) in which the H atom approaches ‘in line’ with the 

molecule. 


