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Rayleigh-Schrödinger Perturbation Theory 

 

Introduction 

 Consider some physical system for which we had already solved the Schrödinger 

Equation completely but then wished to perform another calculation on the same physical system 

which has been slightly modified in some way.  Could this be done without solving the 

Schrödinger Equation again?  This would be particularly irksome if for example all we wanted to 

do was to subject the system (which we now feel is well described by the wave functions and 

energies) to a series of small changes such as imposing a series of electric or magnetic fields of 

various strengths. 

 Suppose the original system were described by the hamiltonian H0, so that we had 

a complete set of energy eigenvalues and eigenfunctions labelled by (0): 

   
)0(

1

)0(

1

)0(

10  EH 
 

   
)0(

2

)0(

2

)0(

20  EH 
     (1) 

   
)0(

3

)0(

3

)0(

30  EH 
  

      

The modification of the system is described by the addition of a term V to the original 

hamiltonian so that the new hamiltonian is H = H0 + V  and has solutions with unsuperscripted 

symbols 

    111  EH  , 

    222  EH     etc. 

 Perturbation theory is based on the principle expressed in McLaurin and Taylor 

series that if a variable x is altered by a small amount  then a function f(x + ) of the variable 

can be expressed as a power series in .  Truncation of the series at the terms of different powers, 

0
, 1

, 2
,  defines the order of the perturbation as zeroth, first, second order etc.  So the 

hamiltonian H and the general solution (i, Ei) for the perturbed system are written as 

 

    
VHH  0      (2) 

and the Schrödinger equation for the perturbed system is 
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-order, 2
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rd
-order corrections to the i

th
 state wave 

functions; ,,,
)3()2()1(

iii EEE  are the 1
st
-order, 2
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-order, 3

rd
-order corrections to the i

th
 

state energies.   

 Substituting for i and Ei back into the Schrödinger equation (3) we have 
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which on equating the same powers of  gives the equations 
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0
 zeroth order (same as eqns. 1) 

)1()0()0()1()1(

0

)0(

iiiiii EEHV  
   

1  first order 

)0()1()1()0(

0 )()( iiii VEEH  
         
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2   second order (6) 

and we could go on . . . 

 The zeroth order equation tells us nothing new  it's just (1).  But (5) and (6) 

define the conditions of first and second order perturbation theory, which come next. 

 

 

 1.  First order perturbation 

 

(a) Energies 

 For this we need eq. (5).  We know the sets {i
(0)

} and {Ei
(0)

} but not the first-

order corrections like {i
(1)

} so let’s express the latter as a combination of our basis set  the 
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complete zeroth order set of functions {i
(0)

}: 
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Since i
(1)

 is a correction to {i
(0)

} the summation excludes j = i.  Substituting (7) in (5) we 

get  
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and since, from (1), H0j
(0)

 = Ej
(0)

 j
(0)

  the operator H0 in the last equation may be replaced by 

Ej
(0)

 giving 
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Multiply by k
(0)

* and integrate: 

 

The integral on the LHS is the Kronecker delta kj which means that it is unity if k = j 

(normalisation) and zero otherwise (orthogonality).  Its effect in the summation is to kill all the 

terms for which j  k, leaving  
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where <k|V|i> is a concise way of writing the integral  dV i
*)(

k
0

.   

 

 In (7) put i = k.  This gives our first useful result: 

   Ei
(1)

 = <i|V|i>      (9) 

In other words, the first order correction to the ith energy is the expectation value 

 dV ii

)0()0( * of V obtained using the zeroth order wave function i
(0)

.  None of the other 

functions )(
ij

0
  are involved.  So the energy corrected to first order is just 
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(b) Wave functions 

 Next, try putting i  k in (7).  This provides the coefficient: 
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But this is what we need in (6) to express the first-order correction to the i
th

 state wave function.  

So the wave function of the i
th

 state, corrected to first order, is  
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Unlike the theory leading to the first-order energy Ei in eqn. (9), in order to express the wave 

function to first order the functions and energies )(
ij

0
  and )(

ijE 0
  of all the other zeroth-order 

states are involved. The function in eqn. (7) is then normalised after calculating all the 

coefficients expressed by eqn. (11). 

 

 2.  Second order perturbation 

 To second order the wave function i and the energy Ei of the i 
th

 state are 

   i = i
(0)

 + i
(1)

 + i
(2)

  

and   Ei = Ei
(0)

 + Ei
(1)

 + Ei
(2)

 

As was done to express the 1st order corrections i
(1)

 to the wave functions in (7), we also write 

the 2nd order corrections i
(2)

 to the functions as a linear combination 

of the zero
th

 order set{i
(0)

}: 
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and substitute this expression in (6): 
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As before we use eq. (1)’s H0j
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 = Ej
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 j
(0)

 to replace H0 by Ej
(0)

, getting 
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Multiply by k
(0)

* and integrate: 
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(Note the Kronecker deltas!  The one on the LHS limits the summation to a single term: 
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Opting for k = i which we’ll call i, not only does the LHS in (14) become zero but so also does 

the first term on the RHS because (7) expressed i
(1)

 in terms of all the j
(1)

 except i
(0)

  the 

first RHS term is a ki where k  i and is therefore zero.  So we are left with   
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and so the perturbed energy level Ei to second order is given by 
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 The 2
nd

 order correction to the wave function, i
(2)

, could be calculated in a 

similar way to that in which we got i
(1)

 that led to (11).  This time it would be by opting for  k  

i in (14), but we don't do this here. 

 

3
rd

 order perturbation 

Here is the energy to 3
rd

 order: 
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      0th order    1st order  2nd order        3rd order 

               correction   correction      correction 

 



 6 

If you look at how the 3
rd

 order term is an extension of the 2
nd

 order term you can guess how to 

write any higher order terms.  The q
th

 order correction to the energy would be 

  
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 Some points concerning Rayleigh-Schrödinger Pertubation Theory 

1. Although we stopped at second order, provided you were persistent enough there would be no 

restriction to proceeding to as high an order of perturbation as you wished, using the equations 

developed in the earlier part of this account. The energy interval ΔEik in the denominators of the 

correction terms (10, (16) or (17) show that successively higher order perturbations make 

successively smaller contributions. 

 

2.  All the r
th

-order corrections to the wave functions, i
(r)

, and energies i
(r)

, involve matrix 

elements <k|V|i> of the perturbation operator V as in (15) in the numerator and energy 

differences i
(r)
k

(r)
 in the denominator, with the sole exception of i

(1)
 in (9).  Physically this 

means that the procedure consists of mixing in functions into i
(0)

, particularly from the set of 

high-energy unoccupied states k
(0)

. 

 

3.  Because of the latter point, RS perturbation theory cannot be used if the state k
(0)

 to be mixed 

with i
(0)

 is energetically degenerate to this state. 

 

4.  From the perturbation corrections like those in eqns. (15) and (16) the mixing in of higher-

order states makes the denominator negative.  The effect is therefore to stabilize the lower-

energy states. 

 

5.  Suppose that we were investigating the states of a molecule A that was influenced by  

another molecule B at a distance R from it.  Then the perturbation operator V would consist of 

those terms describing the coulomb attractions and repulsions of the particles of A with those of 

B.  The basis set of functions would be the complete set {i
(0)

} of functions for both molecules.  
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The expression for the perturbed energy states would start off like (16) but would explore the 

various orders until the higher-order terms become negligible.  When the successive terms i
(1)

, 

i
(2)

, i
(3)

, . . .  are examined they are found to be of the forms R
1

,  R
2

,  R
4

,  R
6

,  R
8

, . . . which 

can be interpreted as the mutual interactions of the net charge, dipoles, quadrupoles, octupoles, ... 

(both permanent and induced) that are created on the two molecules.  This result is sometimes 

interpreted in terms of the non-bonded London or van der Waals forces arising from the 

fluctuating electronic charges on the molecules A and B.  While this description is a useful one, 

you don’t need to think of fluctuating electronic charges    ‘intermolecular forces’ are the 

result of extending or ‘perturbing’ the hamiltonian of one molecule by the effect of the other.  

The effect would also be described by a single calculation using a hamiltonian for the two-

molecule system. 

 

Applications of  Perturbation Theory 

1. The electronic energy of the helium atom  

 The helium atom Hamiltonian is 
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i.e  H  =                                 H
0
           +   V  

 

We shall treat  the electronic repulsion term as a perturbation V of the 0
th

 order 

Hamiltonian H
0
, so 

120

2

4 r

e
V


      (18) 

 

Zeroth order 

Ignoring the electron-repulsion term (18) we express H
0
 as a sum of the two remaining 

parts – one for each of the electrons (1) and (2) 

       H
0
 = H

0
(1) + H

0
(2) 
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where   H
0
(1) = 
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2
2

2

4
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and   H
0
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2
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4
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These components H
0
(1) and H

0
(2) are each Hamiltonians for He

+
 which is a ‘hydrogen-like’ 

atom, whose Schrödinger equations are exactly soluble: 

   H
0
(1)(0)

(1) =  (0)
(1) 

   H
0
(2)(0)

(2) =  (0)
(2) 

Remember – we know (0)
 and  exactly. The ground state is described by the hydrogenic 1s 

atomic orbitals 

    (0)
 = )/exp( 01 aZrN     (19) 

      = 
 20

42

42 

meZ
   (energy of ‘the H-like atom’) 

We write the complete 0
th

 order Hamiltonian H
0
 as H

0
(1,2) as a reminder that it involves the 

coordinates of both electrons and express the required 2-electron wave function (0)
(1,2) as the 

simple product  

(0)
(1,2) = (0)

(1) (0)
(2) 

Operating on it with H
0
(1,2) we have 

 H
0
(1,2) (0)

(1,2) = [H
0
(1) + H

0
(2)] (0)

(1) (0)
(2) 

      = H
0
(1) (0)

(1) (0)
(2) + H

0
(2) (0)

(1) (0)
(2) 

In the first term on the right hand side H
0
(1) operates on (0)

(1) giving  (0)
(1) and leaving 

(0)
(2) unchanged.  Similarly in the second term H

0
(2) operates on (0)

(2) giving  (0)
(2) and 

leaving (0)
(1) unchanged, so we have 

 

H
0
(1,2) (0)

(1,2) = (0)
(1) (0)

(2) + (0)
(1) (0)

(2) 

      = 2(0)
(1) (0)

(2) 

 

So the eigenvalue equation         

H
0
(1,2) (0)

(1,2)  = 2(0)
(1,2) 
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tells us that the He atom 0
th

 order energy is 2, i.e. twice the energy of the He
+
 ion.  This is 54.4 

eV so that the 0
th

 order energy is  

   E
(0)

 = 108.8 eV 

This is physically meaningful because each of the two electrons is described as if it were 

in a He
+
 atom, whose energy is .  The term 

120

2

4 r

e


 that accounts for their mutual repulsion has 

been omitted to form H
0
.   But the energy is far too negative:  the fact that the actual ground-state 

electronic energy of He is 79.0 eV (the sum of the first two ionization energies) shows that it is 

essential to include the interelectronic repulsion term in the Hamiltonian.  

 

 

First order 

From eq. (9) the first order correction to the energy is E1s
(1)

 = <1s|V|1s>  

 )2()1()2,1(
1

*)2,1(
4

)0(

12

)0(

0

2
)1( 


dd

r

e
E    

Substituting for (0)
 from (19) and performing the integration leads to  

 E
(1)

 = 34.0 eV. 

This brings the energy of helium to first order to 

 

 E = E
(0)

 + E
(1)

 

    = 108.8 + 34.0 = 74.8 eV  [exptl. value 79.0 eV] 

 

Second order 

In order to form the matrix elements  dViVk ik

)0(*)0(

 required for substitution in 

eq. (15) we need all the 0
th

-order functions for (0)
, i.e. 

,,, )0(

2

)0(

2

)0(

1 1pss    

and all the corresponding 0
th

 order energies  

,,, )0(

2

)0(

2

)0(

1 1pss EEE  
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But these are known exactly since they are the solutions of a hydrogen-like atom.  Evaluation of 

E
(2)

 from eqs. (15) and (18) gives 4.3 eV, so the energy of helium to second order is 

 

 E = E
(0)

 + E
(1)

 + E
(2)

 

    = 108.8 + 34.0 4.3 = 79.1 eV  [exptl. value 79.0 eV]  

 

Higher orders 

The mixing of the higher order states )0(

k  into the ground state )0(

1s  should also include 

the continuum, i.e. states with energies greater than zero (which is the maximum energy obtained 

from the Bohr formula n   = 
22

0
2

42

2 n

meZ


 ).  The development of N

th
 order perturbation theory is 

tedious but routine, as is the numerical calculation of all the required matrix elements. 

Calculations have been performed up to 13
th

 order giving 

          E  = 2.90372433 hartree (atomic units of energy) 

  = 79.0161 eV 

 

 (Exptl. value 79.0 eV) 
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2. Stark effect 1:  The shifting of the torsional energy levels of an OH group by 

an electric field.   

 

 

 Consider a part XOH of a molecule in which the OH group rotates around the 

XO bond.  OH has an electric dipole moment whose component in the plane perpendicular 

to the XO bond (rotation axis) is . (If 0 is the dipole moment along O-H then  = 0 cos )   

When an electric field F is applied in this plane (i.e. perpendicular to the rotation axis),  rotates 

(in the xy plane) through azimuthal angles monitored as  so that  successively comes into and 

out of alignment with F.  The coupling of the dipole with the field produces an energy  

  V() = ·F =  F cos   

which is an energy perturbation term to the hamiltonian H
0
 and   is the component of the OH 

bond dipole moment perpendicular to the rotation axis. The total hamiltonian is 

 

    H = H
0
 + V . 

 

In the absence of an electric field (F = 0) the solution of  the Schrödinger Equation describing the 

internal rotation, 

 

is the familiar one of a particle confined to a circle:  

  

)0()0(

2

22
)0(0

2



 E

d

d

I
H 






 im

m e
2
1)0( 

I

m
Em

2

22
)0( 

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where ,0m ,1  ,2 . . . 

We shall explore the perturbation of the torsional energy levels to second order by calculating 

the matrix elements of V that are required in the expression from eqn. (15):  

 



 )(

)0(
'

)0(

''
22

'2 mm mm

m
EE

mVmmVm
mVm

I

m
E


  (20) 

Both first- and second-order perturbation terms on the right of this equation require the matrix 

elements Vmm’ where Vmm’ = <mVm’> where m = m’ for the first-order and m  m’ for the 

second-order terms.  We shall first evaluate the general matrix element Vmm’.   

 

 Substituting for 

  V =  F cos   =  F ½(e
i

 + e
i

) 

and the zeroth order functions  

  m 



ime
2

1
  

the matrix element Vmm’  
'mVm becomes 

    Vmm’ 









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

 deeee
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2
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



4
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



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  
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 
2

0

2

0
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Both integrals are of the form 


de in


2

0
 where n is an integer.  Now such an integral is zero 

unless n = 0, in which case it is 2 (see footnote
1
).  Then as m = m  1 either of the two integrals 

contributes 2 and we have 

   FVmm 
2
1

'         (20) 

                                                 

1
If  n  0,       0101

1
2sin2cos

11 2

0

2

0

2

0

 in
nin

in
e
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de inin 


   

Otherwise (n = 0), 


2
2

0

 d  
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This is our required non-zero matrix element of perturbation V.  Note that as Vmm = 0 there is no 

first order correction to the energy. 

We can now calculate the second order perturbation term of the energy. 

   

2

2222

2 h

IF

I

m
Em





 . 

2

22

0
2

0
h

IF
E


  

 

 Rotational level m = 0 of the rotor is therefore lowered by a quantity proportional 

to the square of the field intensity and of the dipole moment of the OH bond.  The 2-

fold degeneracies of the levels are not lifted.  (But they are when higher-order 

perturbation theory is applied!). Recall that   is the component of the OH bond dipole 

moment perpendicular to the rotation axis, and we should write  

 What if the field were applied in a direction other than perpendicular to the 

torsional axis?  Then V =  ·F would have components Vz and Vx from the couplings 

along and perpendicular to the this axis.  The shift from Vx would be of the same form as 

the one we just calculated (but smaller because F has a smaller component in the circle 

around which the dipole moment is rotating), and Vz would be F cos  where  is the 

(constant) angle between  and F.   

 If the electric field were applied parallel to the rotational axis,  would still go 

from 0 to 2 but as it rotated, the OH bond dipole would make a constant angle with the 

field.  The energy shift would then be simply − F sin where  sin is the angle made 

by the bond dipole with the torsional axis (and the electric field). 
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)0(

0

)0(

1

)0(
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)2(

0

01100110









EE

VV

EE
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3.  Stark effect 2: Degenerate perturbation theory.   

Energy splittings in the H atom 
 

 We perturb the 0
th

 order hamiltonian H
0
 of the H atom by adding to it a term 

V = eFz 

Since z is antisymmetric (or odd) any diagonal matrix element Vmm is zero i.e. 0* 




dzz mm  .  

For this reason there is no Stark effect to 1
st
 order PT. 

 In order to go to higher order we must form off-diagonal matrix elements Vmn.  These 

elements will couple the 1s ground state )0(

1s to higher states such as )0(

2s , )0(

2 1p , )0(

2 0p , 

)0(

12 p which will result in a shifted energy level of what was the 1s ground state, but since this 

state is non-degenerate there will be no Stark splitting. 

 We therefore make the problem more interesting by replacing the ground state by the n = 

2 state spanned by the four functions 2s, 2p+1, 2p0, 2p-1.  We should like to know to what extent 

this 4-fold degeneracy is removed by the Stark effect. 

 

Zeroth order functions 

The four basis functions of the n = 2 shell of the H atom, and their energies (all equal, 

En=2) are known exactly.  The functions can be written as products of functions involving 

spherical coordinates r, ,  in the form R(r)  ()  (), and the only factor of these which 

will concern us will be () which is of the form e
im

 where m = 0 for 2s and 1, 0, 1 

respectively for 2p+1, 2p0, 2p1.  Written this way these functions are obviously eigenfunctions of 

the angular momentum operator lz = 




i


 with eigenvalues m .   

s  (2s) = 2se
i0

    lz (2s)  =   0 (2s)   

p+1  (2p+1) = 2pe
i

   lz (2p+1) = +1 (2p+1) 

p0  (2p0) = 2pe
i0

   lz (2p0)  =   0 (2p0) 

p-1  (2p1) = 2pe
i

   lz (2p1) = 1 (2p1) 

where 2s and 2p are the parts of the 2s and 2p AO functions without the () factor. 
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The reason that these functions are eigenfunctions of lz is because this operator commutes with 

the hamiltonian. But as lz also commutes with the perturbation term V = ez, matrix elements 

Vmm’ formed from functions functions m and m’ corresponding to different angular momenta 

m and 'm are zero, 

  i.e.     if  <ilzj> = 0  then <iV j> = 0 also. 

This is because, as lz is a hermitian operator its eigenfunctions are orthogonal if they belong to 

different eigenvalues, i.e. matrix elements <m lz m>  = 0.  The only non-zero elements of V 

are for basis functions corresponding to the same eigenvalue of lz.  However, for the same reason 

as in the application of perturbation theory of a Stark electric field to a molecular torsion, 

diagonal matrix elements of V are zero because the perturbation V = eFz, is not totally 

symmetric, i.e. <mVm>  = 0 for all m>. 

 So we have the following. 

(a) All diagonal elements of V are zero 

(b) Non-zero elements of V must be from pairs of functions corresponding to the same 

eigenvalue of lz.  

This leaves only one pair of functions that forms a non-zero element with V: that between 2s and 

2p0.  Since their degeneracy does not allow them to be used in perturbation theory we shall need 

to calculate the eigenvalues of the energy matrix of V spanned by the four basis functions  

(s,  p+1,  p0,  p1) 

All the elements of V will be zero except two, those formed by (2s and 2p0), and by (2p0 and 2s).  

The zeroth order energy E
(0)

 is the energy of the 2s and 2p orbitals (all four have the same 

energy, because for all hydrogen-like atoms with one electron, a subshell with principal quantum 

number n is n
2
-fold degenerate.  The perturbation energy matrix V is therefore 

  

V =



















0000

0000

000

000

0

0

sVp

pVs

 

The complete hamiltonian matrix, H = H
0
 + V is therefore 
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 H = 





















)0(

2

)0(

2

)0(

2

)0(

2

000

000

000

000

E

E

E

E

 + 





















0000

0000

000

000





 

  =





















)0(

2

)0(

2

)0(

2

)0(

2

000

000

00

00

E

E

E

E





 

 

where )0(

2E is the energy of the n = 2 shell (recall that for a hydrogen atom )0(

2

)0(

2 ps EE  ) and the 

perturbation matrix element <iVj>is assigned to a parameter v 

  i.e.   zpzseF 22     (19) 

that is proportional to the electric field F.  H is ‘block-diagonal’, the blocks being (2  2), (1  1) 

and (1  1).  The energy eigenvalues are obtained in the standard way by setting the determinant 

of each block equal to zero: 

 

EE

EE

EEv

vEE









)0(

2

)0(

2

)0(

2

)0(

2

000

000

00

00

  ( EE )0(

2 )
2

EEv

vEE




)0(

2

)0(

2
  
=

  
0 

 

i.e. ( EE )0(

2 )
2
 [( EE )0(

2 )
2
 – v

2
] = 0 

 

So  the four energy eigenvalues are E = )0(

2E , )0(

2E , )0(

2E  + v, )0(

2E   v.  The block diagonal form 

of the energy matrix tells us immediately that two of the eigenvalues are zero.  In other words, of 

the 4 degenerate states 2s, 2p+1, 2p0, 2p1 two of them  (2p+1 and 2p1) are unaffected by the 

electric field and so remain doubly degenerate.  The degeneracy of the two remaining levels is 

removed as the 2s and 2p0 states combine to produce two new states whose energies are raised 

and lowered by an amount v.  
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