
1

SF Chem 2201.
Chemical Kinetics 
2011/2012.

Dr Mike Lyons
Room 3.2 Chemistry Building

School of Chemistry
Trinity College Dublin.
Email : melyons@tcd.ie

Course Summary.

• Contact short but sweet. 5 Lectures in total (4 this week, 1 next 
week, 3 tutorials next week).

• We revise quantitative aspects of JF kinetics and discuss some 
new more advanced topics and introduce the mathematical 
theory of chemical kinetics.

• Topics include:
– Lecture 1-2. Quantitative chemical kinetics, integration of rate 

equations, zero, first, second order cases, rate constant . Graphical 
analysis of rate data for rate constant and half life determination 
for each case . Dependence of rate on temperature. Arrhenius 
equation and activation energy. Kinetics of complex multistep 
reactions. Parallel and consecutive reactions. Concept of rate 
determining step and reaction intermediate. 

– Lecture 3,4. Enzyme kinetics (Michaelis-Menten case) and surface 
reactions involving adsorbed reactants (Langmuir adsorption 
isotherm).

– Lecture 5. Theory of chemical reaction rates : bimolecular 
reactions. Simple Collision Theory & Activated Complex Theory.

mailto:melyons@tcd.ie
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Recommended reading.
• Burrows et al Chemistry3, OUP Chapter 8. pp.339-403.

• P.W. Atkins J. de Paula.The elements of physical chemistry. 4th edition.
OUP (2005). Chapter 10, pp.229-256; Chapter 11, pp.257-284.

• P.W. Atkins and J. de Paula. Physical Chemistry for the Life Sciences. 1st

edition. OUP (2005). Part II entitled The kinetics of life processes (Chapters 
6,7,8) is especially good.

• Both of these books by well established authors are clearly written with an excellent 
style and both provide an excellent basic treatment of reaction kinetics with emphasis 
on biological examples. These books are set at  just the right level for the course and 
you should make every effort to read the recommended chapters in detail. Also the 
problem sheets will be based on problems at the end of these chapters!

• P.W. Atkins, J. de Paula. Physical Chemistry. 8th Edition. OUP (2006).
Chapter 22, pp.791-829 ; Chapter 23, pp.830-868; 
Chapter 24, pp.869-908.

• A more advanced and complete account of the course material. Much of chapter 24 is 
JS material.

• M.J. Pilling and P/W. Seakins. Reaction Kinetics. OUP (1995).

• Modern textbook providing a complete account of modern
chemical reaction kinetics. Good on experimental methods and theory.

• M. Robson Wright An introduction to chemical kinetics. Wiley (2005)

• Another modern kinetics textbook which does as it states in the title, i.e. provide a 
readable introduction to the subject ! Well worth browsing through.

SF Chemical 
Kinetics.

Lecture 1-2.

Quantitative Reaction 
Kinetics.
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Reaction Rate: The Central Focus of 
Chemical Kinetics

The wide range of reaction rates.

Reaction rates vary from very fast to very slow : 
from femtoseconds to centuries !

1 femtosecond (fs)
= 10-15 s = 1/1015 s !
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Atkins de Paula, Elements Phys. Chem.
5th edition, Chapter 10, section 10.2, pp.221-222

Femtosecond
(10-15 s)techniques

Picosecond (10-12s)
techniques

Reactions studies under constant temperature conditions.
Mixing of reactants  must occur more rapidly than reaction occurs.
Start of reaction pinpointed accurately.
Method of analysis must be much faster than reaction itself.

Chemical reaction kinetics.

• Chemical reactions involve the 
forming and breaking of 
chemical bonds.

• Reactant molecules (H2, I2) 
approach one another and 
collide and interact with 
appropriate energy and 
orientation. Bonds are 
stretched, broken and formed 
and finally product molecules 
(HI) move away from one 
another.

• How can we describe the rate 
at which such a chemical 
transformation takes place?

)(2)()( 22 gHIgIgH 

reactants products

• Thermodynamics tells us all
about the energetic feasibility
of a reaction : we measure the
Gibbs energy DG for the chemical 
Reaction.
• Thermodynamics does not tell us
how quickly the reaction will
proceed : it does not provide
kinetic information.
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Basic ideas in reaction kinetics.
• Chemical reaction kinetics deals with the rate of velocity of chemical 

reactions.

• We wish to quantify
– The velocity at which reactants are transformed to products
– The detailed molecular pathway by which a reaction proceeds (the reaction 

mechanism).

• These objectives are accomplished using experimental measurements.

• We are also interested in developing theoretical models by which the 
underlying basis of chemical reactions can be understood at a 
microscopic molecular level.

• Chemical reactions are said to be activated processes : energy (usually 
thermal (heat) energy) must be introduced into the system so that 
chemical transformation can occur. Hence chemical reactions occur 
more rapidly when the temperature of the system is increased.

• In simple terms an activation energy barrier must be overcome before 
reactants can be transformed into products.

Reaction Rate.
• What do we mean by the term 

reaction rate?
– The term rate implies that something 

changes with respect to something 
else.

• How may reaction rates be 
determined ?

– The reaction rate is quantified in 
terms of the change in concentration 
of a reactant or product species with 
respect to time. 

– This requires an experimental 
measurement of the manner in which 
the concentration changes with time 
of reaction. We can monitor either 
the concentration change directly, or 
monitor changes in some physical 
quantity which is directly proportional 
to the concentration.

• The reactant concentration 
decreases with increasing time, and 
the product concentration increases 
with increasing time.

• The rate of a chemical reaction 
depends on the concentration of each 
of the participating reactant species.

• The manner in which the rate 
changes in magnitude with changes in 
the magnitude of each of the 
participating reactants is termed the 
reaction order.

   
dt

Pd

dt

Rd
R 

Net reaction rate
Units : mol dm-3 s-1

Reactant 
concentration

Product
concentration

[R]t

[P]t

time
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Geometric definition of
reaction rate.

Rate expressed as tangent line
To concentration/time curve at a
Particular time in the reaction.

 d P
R

dt


[ ]d R
R

dt
 

Reaction Rates and Reaction 
Stoichiometry

O3(g) + NO(g)   NO2(g) + O2(g)

 
dt

]Od[
+ = 

dt

]NOd[
+ = 

dt

d[NO]
- = 

dt

Od
- = rate 223

Reaction rate can be quantified by monitoring changes in either reactant
concentration or product concentration as a function of time.
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2 H2O2 (aq)  2 H2O (l) + O2 (g) 

The general case.

• Why do we define 
our rate in this way?
 removes ambiguity in 

the measurement of 
reaction rates in that 
we now obtain a 
single rate for the 
entire equation, not 
just for the change in 
a single reactant or
product.

qQpPbBaA 

   

   
dt

Pd

pdt

Qd

q

dt

Bd

bdt

Ad

a
RRate

11

11




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• The reaction rate (reaction velocity) R is quantified in terms of
changes in concentration [J] of reactant or product species J
with respect to changes in time. The magnitude of the reaction rate
changes as the reaction proceeds.

   
dt

Jd

t

J
R

J
t

J

J


1
lim

1

0


D

D


D

• Note : Units of rate :- concentration/time , hence  RJ has units mol dm-3s-1 .
J denotes the stoichiometric coefficient of species J. If J is a reactant J

is negative and it will be positive if J is a product species.

• Rate of reaction is often found to be proportional to the molar
concentration of the reactants raised to a simple power (which
need not be integral). This relationship is called the rate equation.
The manner in which the reaction rate changes in magnitude with 
changes in the magnitude of the concentration of each participating 
reactant species is called the reaction order.

Rate, rate equation and reaction order : formal
definitions.

     
dt

OHd

dt

Od

dt

Hd
R

gOHgOgH

222

222

2

1

2

1

)(2)()(2





Reaction rate and reaction order.

• The reaction rate (reaction velocity) R is quantified in terms 
ofchanges in concentration [J] of reactant or product species J 
with respect to changes in time. 

• The magnitude of the reaction rate changes (decreases) as the 
reaction proceeds.

• Rate of reaction is often found to be proportional to the molar 
concentration of the reactants raised to a simple power (which 
need not be integral). This relationship is called the rate 
equation.

• The manner in which the reaction rate changes in magnitude with 
changes in the magnitude of the concentration of each 
participating reactant species is called the reaction order. 

• Hence in other words:
– the reaction order is a measure of the sensitivity of the reaction 

rate to changes in the concentration of the reactants.
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Initial rate determined by
evaluating tangent to
concentration versus time
curve at a given time t0.

)()(4)(2 2252 gOgNOgON 

Initial rate is proportional to initial
concentration of reactant.

 

 
0520

0520

)(

)(

ONkrate

ONrate





 
 52

52 ONk
dt

ONd
rate 

k = rate constant

T = 338 K

k = 5.2 x 10-3 s-1

Rate
Equation.

Working out a rate equation.

Products kyBxA

   
   

BAk
dt

Bd

ydt

Ad

x
R 

11empirical rate

equation (obtained

from experiment)

stoichiometric

coefficients

rate constant k

,  = reaction

orders for the

reactants (got

experimentally)Reaction order determination.

Vary [A] , keeping [B] constant and
measure rate R.
Vary [B] , keeping [A] constant and
measure rate R.

Log R

Log [A]

Slope = 

Log R

Log [B]

Slope = 

Rate equation can not in
general be inferred from
the stoichiometric equation
for the reaction.
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ClBrIX

HXXH

,,

222





 
  

    
 
 

 
   2/1

22

22

2

2/1

22

22

22

22

2

1

2

2

ClHk
dt

HCld
R

HClClH

Br

HBrk

BrHk

dt

HBrd
R

HBrBrH

IHk
dt

HId
R

HIIH
















• The rate law provides an important guide
to reaction mechanism, since any proposed
mechanism must be consistent with the
observed rate law.
• A complex rate equation will imply a complex
multistep reaction mechanism.
• Once we know the rate law and the rate
constant for a reaction, we can predict the
rate of the reaction for any given composition
of the reaction mixture.
• We can also use a rate law to predict the 
concentrations of reactants and products at
any time after the start of the reaction.

Different rate equations
imply different mechanisms.

Integrated rate equation.

• Many rate laws can be cast as differential equations which may then be 
solved (integrated) using standard methods to finally yield an 
expression for the reactant or product concentration as a function of 
time.

• We can write the general rate equation for the process A  Products 
as

where F(c) represents some distinct function of the reactant 
concentration c. One common situation is to set F(c) = cn where n = 
0,1,2,… and the exponent n defines the reaction order wrt the reactant 
concentration c. 

• The differential rate equation may be integrated once to yield the 
solution c = c(t) provided that the initial condition at zero time which is 
c = c0 is introduced. 

( )
dc

kF c
dt

 

Burrows et al Chemistry3, Chapter 8, pp.349-356.
Atkins de Paula 5th ed. Section 10.7,10.8,  pp.227-232
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The reaction proceeds at the same rate R
regardless of concentration.

0R cR

c

Rate equation :

0 when 0

dc
R k

dt

c c t

  

 

integrate

using initial

condition

0( )c t kt c   c

t

slope = -k

0c

diagnostic

plot

half life 0
1/ 2

0
1/ 2 1/ 2 0

when
2

2

c
t c

c
c

k



 

 

 

2/1

0c
k

slope
2

1


units of rate constant k :
mol dm-3 s-1

Zero order kinetics.

First order reaction
( )

( )

t

t

rate c

rate kc




k = first order
rate constant, units: s-1

productskA
First order differential
rate equation.

dc
kc

dt
 

00t c c 

 0 0( ) expktc t c e c kt  

Via separation

of variables

Reactant concentration
as function of time.

Initial condition

Solve differential

equation

dc
rate

dt
 

Initial

concentration c0

First order kinetics.
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 

 

0 0

0

( ) exp

( )
exp

ktc t c e c kt

c t
u

c

kt





  

  



0
1/ 2

1/ 2

2

1/ 2

c
t c

u



 

 

 

kk

693.02ln
2/1 

Half life 1/2

Mean lifetime of reactant molecule

  0
0 0

0 0

1 1 1ktc t dt c e dt
c c k


 

   

1 sk

First order kinetics.

In each successive period
of duration t1/2 the concentration
of a reactant in a first order reaction
decays to half its value at the start
of that period. After n such periods,
the concentration is (1/2)n of its
initial value.

1u

5.0u

25.0u

125.0u

0a

a
u 

1/ 2 0 / 2t c c 

2/1

0c

kk

693.02ln
2/1 

half life independent of 
initial reactant concentration

First order kinetics: half life.
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PA k2

2

00

dc
kc

dt

t c c

 

 

separate variables

integrate

0

1 1
kt

c c
 

1

c

t

slope = k

dm3mol-1s-1

half life 0
1/ 2

2

c
t c 

1/ 2

0

1/ 2

0

1/ 2 0

1

1

kc

c

as c











 

2/1

0c

  0

01

c
c t

kc t




rate varies as
square of reactant
concentration

Second order kinetics: equal
reactant concentrations.

0

0

( )
1

1
( )

1

c
c t

kc t

u 








0kc t kt

0( )

( )

ktc t c e

u e 









1st order kinetics 2nd order kinetics

)(u )(u
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1st and 2nd order kinetics : Summary .
Reaction Differential 

rate equation 

Concentration 

variation with 

time 

Diagnostic 

Equation 
Half 

Life 

Products

1
k

A  
1

dc
k c

dt
    0 1

( )

exp

c t

c k t




 1 0ln ( ) lnc t k t c  

 1

2/1

2ln

k
  

Products

2 2
k

A  2

2

dc
k c

dt
   

0

2 0

( )

1

c t

c

k c t




 

2

0

1 1

( )
k t

c t c
   1/ 2

2 0

1

k c
   

 

 

t

ln c(t)
Slope = - k1

t

1/c(t)

Slope = k2

c0

1/2 1st order

2nd order

Diagnostic
Plots .

PnA k

00

ndc
kc

dt

t c c

 

 

separate variables

integrate

 1 1

0

1 1
1

n n
n kt

c c 
  

t

1

1
nc 

 knslope 1

1n

n = 0, 2,3,….. rate constant k

obtained from slope

Half life

 

1

1/ 2 1

0

2 1

1

n

nn kc











1

1/ 2 0

1/ 2 0

1/ 2 0

1

1

nc

n as c

n as c









  

  

 
 

1

1/ 2 0

2 1
ln ln 1 ln

1

n

n c
n k


  

   
  

2/1ln

0ln c

 1 nslope

reaction order n determined

from slope

n th  order kinetics: equal reactant
concentrations.
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0

0
1/ 2

0

2

t c c

c
t c

 

 

Reaction 

Order 

dc
R

dt
   

Integrated 

expression 

Units of k Half life 

1/2 

0 k    0c t kt c    mol dm-3s-1 0

2

c

k  

1 kc  
 
0ln

c
kt

c t

  
 

  
 

s-1 
k

2ln
 

2 
2kc    0

1 1
kt

c t c
   dm3mol-1s-1 

0

1

kc
 

3 
3kc   2 2

0

1 1
2kt

c t c
   dm6mol-2s-1 

2

0

3

2kc
 

n 
nkc   1 1

0

1 1
1

n n
n kt

c c 
  

 

 1

1

0

1 2 1

1

n

nn kc





 
 

  

 
 

 

PnA k

Rate equation

Summary of kinetic results.

PBA k

rate equation

kab
dt

dp

dt

db

dt

da
R 

initial conditions

00000 babbaat 

integrate using

partial fractions

  kt
aa

bb

ab
baF 























0

0

00

ln
1

,

 baF ,

t

slope = k

dm3mol-1s-1

half life

 

0

0

0

2/1
1

1
2ln

a

b

ka
























0

0

2/1

2ln2ln

0
1

1

kbk

kkb













Pseudo first

order kinetics

when b0 >>a0

pseudo 1st order

rate constant

Second order kinetics:
Unequal reactant concentrations.
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Temp Effects in Chemical
Kinetics.

Atkins de Paula 
Elements P Chem 5th edition
Chapter 10, pp.232-234

Burrows et al Chemistry3, 
Section 8.7,
pp.383-389.
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Reaction coordinate
E

ne
rg

y

DU0

E

E’

R

P

TS
Van’t Hoff expression:

0

2

ln c

P

d K U

dT RT

D 
 

 

Standard change in internal
energy:

0U E ED  

k

k

c

R

k

k

P

K






0

2

ln ln
ln

P

d k d k d k U

dT k dT dT RT

  D 
      

2

2

ln

ln

d k E

dT RT

d k E

dT RT



 


This leads to formal
definition of Activation
Energy.

Temperature effects in chemical kinetics.

• Chemical reactions are activated processes : they require an 
energy input in order to occur.

• Many chemical reactions are activated via thermal means.

• The relationship between rate constant k and temperature T 
is given by the empirical Arrhenius equation.

• The activation energy EA is determined from experiment, by

measuring the rate constant k at a number of different 
temperatures. The Arrhenius equation

is used to construct an Arrhenius plot

of ln k versus 1/T. The activation energy

is determined from the slope of this plot.











RT

E
Ak Aexp

Pre-exponential
factor

 



















dT

kd
RT

Td

kd
REA

ln

/1

ln 2

kln

T

1

R

E
Slope A
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In some circumstances the Arrhenius Plot is curved which implies that 
the Activation energy is a function of temperature.
Hence the rate constant may be expected to vary with temperature
according to the following expression.

expm E
k aT

RT

 
  

 

2 2

2

ln ln ln

ln
A

A

E
k a m T

RT

d k m E
E RT RT E mRT

dT T RT

E E mRT

  

   
      

   

 

We can relate the latter expression to the Arrhenius  parameters A and EA

as follows.

Hence
exp expm m A A

m m

E E
k aT e A

RT RT

A aT e

   
      

   



Svante August
Arrhenius

Consecutive Reactions .
PXA

kk
 21

14

2

13

1

214214218

106105  



sksk

BiPbPo

•Mother / daughter radioactive
decay.

xk
dt

dp

xkak
dt

dx

ak
dt

da

2

21

1







3 coupled LDE’s define system :

xaap  0

Mass balance requirement:

The solutions to the coupled
equations are :
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We get different kinetic behaviour depending

on the ratio of the rate constants k1 and k2
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reaction co-ordinate
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Case I .
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I : fast II : slow

rds

DGI
‡ << DGII

‡

Step II is rate determining
since it has the highest
activation energy barrier. The reactant species A will be

more reactive than the intermediate X.

Consecutive reaction : Case I.
Intermediate formation fast, intermediate decomposition slow.
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Initial reactant A more
reactive than intermediate X .
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Reactant A

Product P

Intermediate X
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Case I .
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Concentration of intermediate

significant over time course of

reaction.
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key parameter
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Case II .
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A

X
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TS II

reaction co-ordinate

DGI
‡

DGII
‡

PXA
kk
 21

I : slow rds II : fast

DGI
‡ >> DGII

‡

Step I rate determining
since it has the highest
activation energy barrier.

Intermediate X fairly reactive.
[X] will be small at all times.

Consecutive reactions Case II:
Intermediate formation slow, intermediate decomposition fast.

PXA
kk
 21

Intermediate X
is fairly reactive.
Concentration of
intermediate X
will be small at
all times.
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Intermediate concentration

is approximately constant

after initial induction period.

Case II .
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PXA
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 21

21 kk 

Fast Slow

• Reactant A decays rapidly, concentration of intermediate species X
is high for much of the reaction and product P concentration rises
gradually since X--> P transformation is slow .

Rate Determining Step

PXA
kk
 21

12 kk 

Slow Fast

Rate Determining 

Step

• Reactant A decays slowly, concentration of intermediate species X
will be low for the duration of the reaction and to a good approximation
the net rate of change of intermediate concentration with time is zero. 
Hence the intermediate will be formed as quickly as it is removed.
This is the quasi steady state approximation (QSSA).

Parallel reaction mechanism.

• We consider the kinetic analysis of a concurrent 
or parallel reaction scheme which is often met in 
real situations. 
• A single reactant species can form two
distinct products.
We assume that each reaction exhibits 1st order
kinetics.

YA

XA

k

k





2

1

k1, k2 = 1st order rate constants

• Initial condition : t= 0, a = a0 ; x = 0, y = 0 
.• Rate equation:

  akakkakak
dt

da
R  2121

    tkkatkata 2100 expexp)(  

• Half life:
21

2/1

2ln2ln

kkk 
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



• All of this is just an extension of simple
1st order kinetics.

We can also obtain expressions
for the product concentrations
x(t) and y(t).
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Final product analysis
yields rate constant ratio.
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Parallel Mechanism: k1 >> k2
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Parallel Mechanism: k2 >> k1
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N2O4 (g) 2 NO2 (g)

colourless brown

Reaching Equilibrium on the 
Macroscopic and Molecular Level

NO2

N2O4

Chemical Equilibrium :
a kinetic definition.

• Countless experiments with chemical 
systems have shown that in a state of 
equilibrium, the concentrations of 
reactants and products no longer change 
with time.

• This apparent cessation of activity occurs 
because under such conditions, all 
reactions are microscopically reversible.

• We look at the dinitrogen tetraoxide/

nitrogen oxide equilibrium which

occurs in the gas phase.
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
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Equilibrium
state

Kinetic
regime
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N2O4 (g) 2 NO2 (g)

colourless brown

 

 
eq
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2

Concentrations vary
with time

Concentrations time
invariant

Kinetic analysis.
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Equilibrium:
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Valid for any time t

t

t

Equilibrium
constant
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First order reversible reactions : 
understanding the approach to chemical equilibrium.

A B
k

k'

Rate equation

bkka
dt

da


Initial condition

00 0  baat

Mass balance condition

0abat 

Introduce normalised variables.

 
k

k
tkk

a

b
v

a

a
u


 
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Rate equation in normalised form
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Solution produces the concentration expressions
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First order reversible reactions: approach to equilibrium.
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 = (k+k')t
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Approach to

Equilibrium

Q < 

Equilibrium

Q = K = 

Understanding the difference between reaction quotient Q and 
Equilibrium constant K.

 
 



u

v
K

Kinetic versus Thermodynamic 
control.

• In many chemical reactions 
the competitive formation of 
side products is a common 
and often unwanted 
phenomenon.

• It is often desirable to 
optimize the reaction 
conditions to maximize 
selectivity and hence 
optimize product formation.

• Temperature is often a 
parameter used to modify 
selectivity.

• Operating at low 
temperature is generally 
associated with the idea of 
high selectivity (this is 
termed kinetic control). 
Conversely, operating at high 
temperature is associated 
with low selectivity and 
corresponds to 
Thermodynamic control.

• Time is also an important 
parameter. At a given 
temperature, although the 
kinetically controlled product 
predominates at short times, 
the thermodynamically 
controlled product will 
predominate if the reaction 
time is long enough.

Refer to JCE papers dealing with this
topic given as extra handout.
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Short reaction
times

Assume that reaction
product P1 is less stable
than the product P2.
Also its formation is
assumed to involve
a lower activation
energy EA.

Temperature effect.

• Kinetic control.
– Assume that energy of products 

P1and P2 are much lower than that of 
the reactant R then EA,1<<EA,-1 and 
EA,2 << EA,-2.

– At low temperature one neglects the 
fraction of molecules having an 
energy high enough to re-cross the 
energy barrier from products to 
reactants.

– Under such conditions the product 
ratio [P1]/[P2] is determined only by 
the activation barriers for the 
forward R  P reaction steps.

• Thermodynamic control.
– At high temperature the available 

thermal energy is considered large 
enough to assume that energy 
barriers are easily crossed. 
Thermodynamic equilibrium is 
reached  and the product ratio 
[P1]/[P2] is now determined by the 
relative stability of the products P1
and P2.
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 
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Short time
Approximation.
Neglect k-1, k-2

terms.
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Long time approximation.
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Kinetic control
Limit.

Thermodynamic
control limit.

General solution valid for intermediate times.
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These expressions reproduce
the correct limiting forms 
corresponding to kinetic and
Thermodynamic control in the
limits of short and long time
respectively.
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• Detailed mathematical analysis of complex 
reaction mechanisms is difficult.
Some useful methods for solving sets of 
coupled linear differential rate equations 
include matrix methods and Laplace Transforms.

• In many cases utilisation of the quasi steady 
state approximation
leads to a considerable simplification in the 
kinetic analysis.

The QSSA assumes that after an initial 
induction  period (during which the 
concentration x of  intermediates X rise
from zero), and during the major part 
of the reaction, the rate of  change of 
concentrations of all reaction 
intermediates are negligibly small.

Mathematically , QSSA implies

removalXformationX

removalXformationX
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Quasi-Steady State Approximation.
QSSA

QSSA: a fluid flow analogy.

• QSSA illustrated via analogy 
with fluid flow.

• If fluid level in tank is to 
remain constant then rate of 
inflow of fluid from pipe 1 
must balance rate of outflow 
from pipe 2.

• Reaction intermediate 
concentration equivalent to 
fluid level. Inflow rate 
equivalent to rate of 
formation of intermediate 
and outflow rate analogous to 
rate of removal of 
intermediate.

P1

P2

Fluid level
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Consecutive reaction mechanisms.

A X P

k1

k-1

k2 Step I is reversible, step II is
Irreversible.
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Definition of normalised variables
and initial condition.

Coupled LDE’s can be solved via Laplace
Transform or other methods.
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Using the QSSA we can develop more
simple rate equations which may be
integrated to produce approximate
expressions for the pertinent concentration
profiles as a function of time.
The QSSA will only hold provided that:

• the concentration of intermediate is small
and effectively constant, 

and so :

• the net rate of change in intermediate
concentration wrt time can be set equal to
zero.
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Concentration versus log time curves
for reactant A, intermediate X and
product P when full set of coupled
rate equations are solved without
any approximation.
k-1 >> k1, k2>>k1 and k-1 = k2 = 50.
The concentration of intermediate X is
very small and approximately constant
throughout the time course of the
experiment.
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PConcentration versus log time curves
for reactant A, intermediate X, and
product P when the rate equations
are solved using the QSSA.
Values used for the rate constants
are the same as those used above.
QSSA reproduces the concentration
profiles well and is valid.
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QSSA will hold when concentration

of intermediate is small and constant.

Hence the rate constants for getting

rid of the intermediate (k-1 and k2)

must be much larger than that for

intermediate generation (k1).
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Concentration versus log time curves
for reactant A, intermediate X and
product P when full set of coupled
rate equations are solved without
any approximation.
k-1 << k1, k2,,k1 and k-1 = k2 = 0.1
The concentration of intermediate is
high and it is present throughout much
of the duration of the experiment.

Concentration versus log time curves
for reactant A, intermediate X and
product P when the Coupled rate 
equations are solved using
the quasi steady state approximation.
The same values for the rate constants
were adopted as above.

The QSSA is not good in predicting
how the intermediate concentration
varies with time, and so it does not
apply under the condition where the
concentration of intermediate will be
high and the intermediate is long lived.
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