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The application of symmetry principles to  MO theory 

 

 Hückel molecular orbital (HMO) theory is a simple and versatile method that 

provides important features for any  conjugated molecule.  However since the method leads 

to an n  n energy matrix (determinant) the solution of the consequent polynomial equation of 

order n constitutes a ‘bottleneck’ in the calculation.   So unless a computer is deployed to 

assist with the numerical solution of the secular equations, ‘pencil and paper’ calculations 

are necessarily limited to rather small molecules. Fortunately, if the molecule contains atoms 

which are symmetrically ‘equivalent’, this limitation may not be necessary, and the 

exploitation of symmetry can lead to other benefits, as we shall see. 

    
CH2
1

2

3

CH2
4

 

 Our treatment of  butadiene H2C=CH–CH=CH2 in the introducton to Hückel theory 

did not recognise the equivalence of carbon atoms 1 and 4 in the terminal methylene groups 

or of atoms 2 and 3 forming the central bond.  The  MO was written as 

     = c11 + c22 + c33 + c44    (1) 

and in order to evaluate the LCAO coefficients {cr} we applied the Variation Method which 

led to four secular equations, a determinantal equation in x4 and to four MOs and four enegy 

levels.  Even a simple consideration can show that this entailed unnecessary labour.  We 

have seen that in eqn. (1) the quantity |cr|
2 measures the electron population in the  MO  .  

But these populations are the same for atoms 1 and 4 and also for 2 and 3.  So we write 

   |c1|
2 = |c4|

2 and |c2|
2 = |c3|

2 

and immediately deduce that c1 =  c4 and c2 =  c3. The LCAO coefficients in eqn. (1) have 

therefore been reduced to two, and reduces to 

     = c1(1  4) + c2(2  3)    (2) 

which is a linear combination of two symmetry orbitals, and for any + or  sign would lead 

to two secular equations (not 4) and therefore to a quadratic (not quartic) equation. 

 Before proceeding there are three things to point out. 

(1) Remember that while  (x,y,z) is a function that describes the whole of space 

(x, y and z may be given any values)  (xp,yp,zp) is not a function – it specifies 

the numerical value of   at the point (xp,yp,zp) in space. 
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(2) If   in eqn. (2) is really to be expressed as a combination of symmetry orbitals 

these should be normalised.  So replace (2) by 

          c c1 1 4 2 2 3

1

2

1

2
( ) ( )   (2a) 

(3) Could the ± signs in eqn. (2a) be independently ‘+’ and ‘–’, leading to four 

possible WFs, or should they be taken in tandem i.e. ‘+’ with ‘+’, and ‘–’ with 

‘–’, resulting in two WFs? 

 

Let’s address point (2) immediately.  Consider a symmetry element that transforms atom 1 

into atom 4 and atom 2 into atom 3.  This symmetry operation will be denoted R; for 

butadiene R could be a 180° rotation (C2) about the molecular centre.  Mathematically the 

action of R on the wave function     (x,y,z) at point (x1 y1 z1) is a transformation to some 

other (symmetrically related) point e.g. (x4 y4 z4), i.e. 

    R  (x1 y1 z1) =  (x4 y4 z4)    

(3) 

 

Similarly   R  (x2 y2 z2) =  (x3 y3 z3). 

 

Now if we were to apply R to | |2 the result would leave | |2 unchanged.  This is because R 

transforms | (x1 y1 z1)|
2 to the symmetrically equivalent point | (x2 y2 z2)|

2, and since the 

electron densities are the same at these two points,  

| (x1 y1 z1)|
2 = | (x4 y4 z4)|

2, 

so          R [| (x1 y1 z1)|
2] = | (x4 y4 z4)|

2.   (4) 

Since R on the left hand side of eqn. (4) operates on the whole of     the equation means  

[R  (x1 y1 z1)][R  (x1 y1 z1)] = | (x4 y4 z4)|
2. 

This equation is obeyed if the following conditions hold for the two chemical sites:  

    R  (x1 y1 z1) = ± (x4 y4 z4) 

          (5) 

    R  (x2 y2 z2) = ± (x3 y3 z3)  

In other words, the application of a symmetry operation to the wave function either leaves i t 

unchanged or else multiplies it by –1.  (Actually ‘multiplies it by a factor of modulus unity’, 

which means that it could alternatively be multiplied it by i or by – i, but as we shall at 

present use only real wave functions this alternative will not arise.) 

 Let’s see if the MO wave functions in eqn. (2a) satisfy the condition in eqn. (5).  
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 (a) Consider first the case where all the signs in eqn. (2) are positive.  As R interchanges 

atoms 1 and 4 and also 2 and 3, its result on   is: 

  R        c c1 4 1 2 3 2

1

2

1

2
( ) ( )  

i.e.  R + =  + 

and so condition (5) is obeyed.  

 

 (b) Take the negative signs in eqn. (2) and get 

  R        c c1 4 1 2 3 2

1

2

1

2
( ) ( )    

i.e.  R =    

Again condition (5) is obeyed, and so  + and    are acceptable.  Each is of the form 

    = c11 + c22 

where the s are symmetry orbitals, and so each of them will provide two MOs and two 

energy levels, making a total of four as is expected for butadiene. 

 What about a ‘mixed’ function such as  

         c c1 1 4 2 2 3

1

2

1

2
( ) ( )  

where the first symmetry orbital is symmetric and the second is antisymmetric?  In such a 

case it is easy to see that R    , i.e. our required condition (5) is not obeyed (try it!), and 

so this   is not an acceptable MO.  Indeed it would be disturbing if this were not the case 

because we have seen that + and   between them have already provided the four MOs 

required for butadiene!  In short, for a MO wave function to be acceptable all parts of it 

must transform in the same way when it is subjected to a symmetry operation. 

 

Example 

 Let us take one of these symmetry adapted MO-WFs ( , say) see how we can use 

them to calculate the energy levels.   

         c c1 1 4 2 2 3

1

2

1

2
( ) ( )  = c11

+ c22
 

where the symmetry functions are denoted by  symbols.  We proceed in the standard way 

in the Hückel method and calculate the secular determinant: 
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H E H

H H E

11 12

21 22
0




  

where the elements are defined in the usual manner (i.e. H11 = 1
H1

 d etc.) and where  

                         1
  

1

2
1 4( )                        and                   2 2 3

1

2

  ( )   

 

Evaluating the Hij, we have 

 H11  = ½(1  4)H(1  4) d  

  = ½[1H1 d + 2H2 d  1H2 d  2H1 d] 

  = ½[ +   0  0] 

  =  

 H22  = ½(2  3)H(2  3) d  

  = ½[2H2 d + 3H3 d  2H3 d  3H2 d] 

  = ½[ +     ] 

  =    

 H12  = ½(1  4)H(2  3) d  

  = ½[1H2 d  1H3 d  4H2 d + 4H3 d] 

  = ½[  0  0 + ] 

 H12  =  

 

 The secular determinant al equation is therefore 

    
 

  



 


E

E
0  

i.e.  
x

x

1

1 1
 = x(x  1)  1 = 0 

so  

  x = 0618034    or  x = 1618034 

which were two of butadiene’s four roots obtained previously.  The other two (0618034 

and +1618034) are obtained from the  + function. 

 

Other symmetries 
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 If the molecule has only one symmetry element e.g. a C2 rotation or a mirror 

plane it is easy to construct the MO wave functions  we ensure that they are either 

symmetric or antisymmetric to that symmetry element. But naphthalene for example has, in 

addition to C2, mirror planes xz and yz.  If the symmetry orbitals were chosen so as to be 

symmetric and antisymmetric to each symmetry element, there would be 2  2  2 of them, 

which would lead to far too many MO-WFs.  

We have derived the rule requiring that the symmetry functions of all species of 

atoms for butadiene these are either symmetric or antisymmetric to symmetry operation R̂ .   

What do we do when the molecular symmetry contains several symmetry elements?  The 

answer is that we must create symmetry functions   
i 
that transform according to an 

‘irreducible representation’ or symmetry type (labelled i) of the molecular point group.  

This will be discussed in the next section. 

 

The use of Group Theory to calculate MOs in pentalene 

 

    

 The  molecular orbital wave function in pentalene (refer to the atomic numbering 

below on this page) are 

    = c1 ½(1   *  3   *  4   *  6)  

   +  c2 ½(2   *   5)   +  c7 ½(7   *  8)  (6a) 

or    = c11  +  c22  +  c77     (6b) 

where 1, 2   and 7 are symmetry orbitals for atoms of type 1, 2 and 7, and where the 

five symbols ‘*’ stand for some set of ‘+’ and ‘–’ signs. 
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 We find the combinations of signs ‘*’ in the first equation using the projection 

operator method.  Although the molecule’s full point group is D2h, the C2v (sub)group is the 

most convenient one to describe the   molecular orbitals in a planar molecule. (D2h would 

give the same results, but with greater labour because it includes unnecessary elements like 

xy, i.e. reflection in the molecular plane.) 

 Symmetry functions r
i( )  transforming according to symmetry i (where i is A1, A2, B1 

or B2, can be formed by ‘projecting’ them out of the total wave function as follows: 

   r
i

R
i

R

E C

rN R
xz yz

   
 

( )
, , ,2

    (7) 

where R
i( )

is the character of symmetry element R in the ith irreducible representation and N 

the normalisation constant, which is determined at the end of the calculation.  The summation 

is taken over all the elements R of the group.  These are given on the top line of the C2v 

character table: 

   

C2v E C2 xz yz  
A1 +1 +1 +1 +1 z 
A2 +1 +1 1 1  
B1 +1 1 +1 1 x 
B2 +1 1 1 +1 y 

 

 As an example of the method, let’s calculate the molecular orbital that has symmetry 

B1.   Application of eq. (7) to calculate the symmetry orbital of atom type 1 gives  

 1 1 2 1 1 1
1 1

2

1 1 1B B

C

B B
xz

B
yzN E C

E xz yz

   [ ]             (8)  

Application of E, C2, xz and yz to 1 generates 1, 4, 3 and 6. So eq. (8) produces 

N(1   +  3   –  4   –  6), and since four symmetrically equivalent functions are being 

combined the normalization factor is 1/4: 

   1
1B

 = ½(1   +  3   –  4   –  6) 

the factor ½ being obtained from normalisation.  A similar application to 2 produces  

N(2   +  2   –  5   –  5) which is a combination of two functions, 2 and 5.  So the 

symmetry orbital is 

    2
1B

 = ½(2  –  5), 

while the symmetry orbital for atoms 7 and 8 turns out to be zero: 
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    7
1B

= 0. 

The molecular orbital with B1 symmetry is therefore 

  
B

1  = c1½(1   + 3   –  4   –  6) + c2 ½(2  –  5) 

 

The complete set of MOs, classified according to the four symmetries of C2v are: 

  A1  = c1½(1 + 3 + 4 + 6)  + c2 ½(2 + 5)  + c7½(7  +  8) 

  A2  = c1½(1 – 3 + 4 – 6)  

  B1  = c1½(1 + 3 – 4 – 6)  + c2 ½(2 – 5) 

  B2  = c1½(1 – 3 + 4 – 6)     +  c7½(7  –  8) 

 

 Because of the numbers of symmetry orbitals that are being combined to form 

 A1 , A2 , B1 and  B2 , there will be respectively 3, 1, 2 and 2 molecular orbitals 

transforming according to the symmetries A1, A2, B1 and B2.  So there are 

 

   three A1 molecular orbitals and energy levels, 

   one   A2 molecular orbital and energy level, 

   two   B1 molecular orbitals and energy levels, 

   two   B2 molecular orbitals and energy levels. 

 

Secular equations 

 We shall consider the A1 orbitals, and let you do the rest (which are easier!). 

  c1(H11– E) + c2 H12 +   c7 H17  = 0 

  c1 H21    + c2 (H22– E) +  c7 H27  = 0 

  c1 H71   + c2 H72 +  c7 (H77– E) = 0 

 

Secular-determinantal equation: 

     0

777271

272221

171211









EHHH

HEHH

HHEH

 

 

The matrix elements Hrs = r* H s d are calculated as follows: 

 H11 = 1H 1 d = ¼(1+3+4+ 6)H (1+3+4+ 6) d = ¼  4 =  

 H22 = 2H 2 d = ½(2 + 5)H(2 + 5) d = ½  2     =  
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 H77 = 7H 7 d = ½(7 + 8)H(7 + 8) d= ½  2    =  

 H12 = 1H 2 d = 1/22 (1+3+4+ 6)H (2 + 5) d   = 2/4  4 = 2 

 H17 = 1H 7 d = 1/22 (1+3+4+ 6)H(7 + 8) d    = 2 

 H27 = 2H 7 d = ½(2 + 5)H(7 + 8) d     = 0 

 

 The secular equations are now 

  c1( – E)  + c2 2 +  c7 2  = 0 

  c1 2      + c2( – E)    = 0        (9) 

  c1 2   + c7 (+ – E) = 0,   

 

 giving    

x

x

x

2 2

2 0

2 0 1

=0 

 

where x = ( - E)/.  Expanding the determinant, we get the cubic equation 

           x3 + x2 – 4x – 2 = 0 

whose solutions are x = –23429, x = –04707 or x = +18136.  Substituting these values in 

turn into the secular eqns (9) gives the LCAO coefficients. 

       x               c1             c2             c7 

   18136      07332  –05716  –03685 

 –04707  –02414  –07252      06449 

 –23429      06358      03838      06696 

 

 Taking account of the normalisation factors ½ and ½ in eq. (6a), the lowest-energy 

molecular obital (that for E =  + 23429 ) can  be written 

   = 03179(1+3+4+ 6)   +  02714(2 + 5)  +  04735(7 + 8), 

and the other two similarly.   

 

 

Final results 

 The same procedure is followed to obtain the MOs characterised by the remaining 

symmetries,  A2, B1 and B2.  The results are displayed in the following table, which lists the 

MOs and their energies from E1 =  + 2.3429  (lowest) to E8 =  – 2.0000   (highest).  

The eight  electrons occupy the lowest available energy levels, E1 to E4. 

 

   Energy     Sym.     c1      c2      c7 
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 – 2.0000       _____  B2 –0.5774   0.0000   0.8166    

  – 1.8136       _____  A1   0.7332 –0.5716 –0.3685 

 – 1.4142        _____  B1 –0.7072   0.7071   0.0000 

  + 0.0000 _____  A2   1.0000   0.0000   0.0000 

  + 0.4707     
__


__


__ 
  A1 –0.2414 –0.7252   0.6449 

 + 1.0000 
__


__


__
  B2   0.8166   0.0000   0.5774 

 + 1.4142     
__


__


__
   B1   0.7072   0.7071   0.0000 

  + 2.3429     
__


__


__
  A1   0.6358   0.3838   0.6696  

 

The coefficients not listed in the table (c3, c4, c5, c6 and c8) can be obtained from the 

functions A1 ,  A2 ,  B1 and  B2 that were derived above. 

 The LCAO coefficients may be used to calculate the net atomic charges on the carbon 

atoms and the bond orders: 

  

 

Notes on the results of the calculation  

1. The application of Group Theory to pentalene replaces the secular determinant of order 

8 when symmetry is not applied, by four determinants, of orders 1, 2, 2 and 3.  The 

theory identifies the respective symmetries of the molecular orbitals in these cases as A2, 

B1, B2 and A1. 

2. In the lowest-energy molecular orbital all the LCAO coefficients possess the same sign;  

i.e. this MO possesses no nodes perpendicular to the molecule. 

3. The molecule possesses a non-bonding MO (energy E = , and symmetry A2), although it 

is unoccupied.  The reason for its existence should be clear from the form of the function 

2A on p. 6:  it is simply that none of the atomic orbitals involved in 2A are nearest 

neighbours.   In accordance with the nearest-neighbour approximation inherent in the 

Hückel method, there are therefore no interactions between the atomic orbitals.  

Consequently the molecular orbital consists of a set of isolated C(2p) orbitals, with 

energy . 

 

 



 10 

Electronic transitions involving  molecular orbitals 

  We consider ‘electric dipole transitions’ which occur as a result of the coupling 

between the electric field component of the electromagnetic radiation (which oscillates with 

the frequency of the radiation) and the electric dipole moment which the electric field 

induces in the molecule*.  An electric dipole moment  interacts with an electric field E, 

shifting its energy by an amount E =  ·E.   If a dipole were just a pair of charges (q, q) 

connected by a vector x the dipole moment would be  = qx and the energy coupling with 

the field E  would be given by E = qx·E.   However in atoms and molecules the electric 

effects giving rise to dipoles are not point charges, but must be described by an electron 

density function (x,y,z), which is the square of some electronic wave function  (x,y,z).  As 

a result the coupling energy will involve the factor qE x| |2 which must be integrated over 

space to explore the different charges over the different regions of space. 

  In short a photon may be absorbed from the radiation field provided the photon’s 

energy just matches the coupling between the dipole moment  and the electric field E.  If it 

does, a transition will occur between the initial state 0 of the molecule and its final state 

1 and energy is absorbed from the radiation field at a rate proportional to   

  dxM x

1001        (10) 

which is called the transition moment integral (TMI) between the states 0 and 1 when 

the electric field is polarized along the x direction.  The TMIs 
yM 01 and 

zM 01  are defined 

analagously to eqn. (10) for polarizations along the other two directions.  Since the TMI is a 

measure of the rate of energy absorption it is also measures the probability of a transition 

between the specified states 0 and1.  Using q to symbolise x or y or z, the explanation of 

the TMI implies that if
qM 01 is large the transition is ‘highly allowed’ and if it is zero, the 

transition is forbidden. For our purpose it will never be necessary to evaluate the TMI:  we 

shall be interested only in ascertaining whether or not a proposed transition is allowed.  It 

will then be sufficient to test whether or not the TMI has a non-zero value.  

 In order to carry out this test symmetry considerations come to our aid.  Some 

mathematical functions have parity properties: for example cos (x) is an even function while 

sin (x) is an odd function.  This is because of the behaviour of the functions when the sign of 
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the argument is changed: cos (x) = cos (x) whereas sin (x) = sin (x).  As a result, the 

integral 




a

a
dxxf )(  of an odd f(x) is zero, since it is the sum of pairs of mutually annihilating 

integrand contributions as shown in the sketch, while this is not (necessarily) so if f(x) is an 

even function*.    

  

Electronic state 

                                                                                                                                                                                        
*
 The radiation of course also has a magnetic field component, which oscillates perpendicular to the 

electric field and with the same frequency.  But as the  magnetic susceptibility of diamagnetic molecules is 

low, we do not consider magnetic effects.   

*
 It has to be put like that.  An even function might ‘accidentally’ have 






a

a
dxxf 0)( as we would have for 

the integral 







dxxcos .  If such an integral occurred in eqn. (10) then the transition would be forbidden. 

All we’re saying is that if the integrand is odd then the integral will definitely be zero. The approach could 

not be used to prove that an integral with an even integrand is definitely non-zero. 
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 Before proceeding further we should ensure that we agree on the meaning of an 

electronic state.  It describes the result of assigning electrons to the available molecular 

orbitals.  If all the electrons in our pentalene example above occupy the lowest-energy MOs 

in accordance with the Pauli principle the resulting electronic structure ( 1)
2, ( 2)

2, ( 3)
2, 

( 4)
2, ( 5)

0, ( 6)
0, ( 7)

0, ( 8)
0 is referred to as the ground electronic state and it will be 

described by an overall wave function 0.  Any other electron assignments to the MOs will 

define excited electronic states 45, 46,  . . .  

MO sym 

 8  B2
  __________  __________  __________  __________ 

 7  A1
  __________  __________  __________  ____


_____ 

 6  B1
  __________  __________  ____


_____  __________ 

 5  A2
  __________  ____


_____  __________  __________ 

 4  A1
  ____


____  _____


____  _____


____  _____


____ 

 3  B2  
____


____  ____


____  ____


____  ____


____ 

 2  B1
  ____


____  ____


____  ____


____  ____


____ 

 1  A1
  ____


____  ____


____  ____


____  ____


____ 

 

         0                 45                   46                   47 

   Ground state            1
st excited state         2nd excited state 

 

 

Electronic states will be described by upper-case symbols 0, 45, 46, . . . (whereas 

lower-case symbols  1,  2,  3,  4, . . .    as usual denote the MO-WFs).   

 

The transitions 

 Whether or not the transition from the ground state to the 1st excited state with x 

polarization is allowed or forbidden depends on the TMI   dxM x

45045,0   .  And 

whether or not it is zero just depends on the symmetry of the integrand 0 x45:  if the 

transition is to be allowed the integrand must be totally symmetric, i.e. it must have 

representation A1.  How this is ascertained will now be shown. 

 We know the symmetries of the component MOs  1,  2,  3, . . . In fact the MOs are 

often denoted by their symmetry labels so that the electronic states would be described as  

 

    0  a1
2 b1

2 b2
2 a1

2 a2
0 b1

0 a1
0 b2

0 

    45  a1
2 b1

2 b2
2 a1

1 a2
1 b1

0 a1
0 b2

0 

    46  a1
2 b1

2 b2
2 a1

1 a2
0 b1

1 a1
0 b2

0 
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But what are the symmetries of these electronic states0, 1, 2, . . .?  This is provided by 

the direct products of the symmetries of each of the occupied one-electron MOs:  Using the 

symbol   to mean ‘the symmetry of’ we write 

    (0) = (A1 A1)  (B1 B1)  (B2 B2)  (A1 A1) 

which consists of multiplied product pairs associated with the 1st to 4th MOs, which are 

doubly occupied.  There are no contributions from the unoccupied MOs (nos. 5 to 8). The 

direct product of a pair of symmetries is obtained by multiplying the characters of each of 

them in turn, and then using the result to identifying the symmetry.  Suppose for example we 

wanted to know the symmetry of A2  B1.  From the character table of C2v (p. 6) we have  

   ( A2  B1) = (+1 +1 –1 –1)  (+1 –1 +1 –1) = (+1 –1 –1 +1) 

But as the same character table shows that these characters are those that describe symmetry 

B2, we conclude that A2  B1 = B2. 

 Now let’s take the electronic states that we wish to consider for pentalene.  The 

symmetries of doubly-occupied MOs are always A1 because for example  

  ( A2  A2) = (+1 +1 –1 –1)  (+1 +1 –1 –1) = (+1 +1 +1 +1)  = A1.          

So,  

  (0) = (A1 A1)  (B1 B1)  (B2 B2)  (A1 A1)    = A1. 

  (45) = (A1 A1)  (B1 B1)  (B2 B2)  (A1 A2) = A1  A2  = A2 

  (46) = (A1 A1)  (B1 B1)  (B2 B2)  (A1 B1) = A1  B1  = B1 

We now have the symmetries of the required states.  It only remains now to get the overall 

symmetries of the TMI integrands for the various cases.  For example the possibility of a 

transition between the ground and first excited states depends on the symmetry of the 

integrand in dxM x

45045,0   . Now,  

   (0 x45) = (0)  (x)  (45) = A1  B1  A2  = B1  A2  

     = (+1 –1 +1 –1)  (+1 +1 –1 –1) 

     = (+1 –1 –1 +1) 

     = B2. 

We have just determined the symmetry of the integrand in xM 45,0 , and it is not A1!  Therefore 

the transition is not allowed with x polarization.  What about the polarizations along the 

other directions? 

 (0 y45)  = (0)  (y)  (45) = A1  B2  A2  = B2  A2  = B1.  

 (0 z45)  = (0)  (z)  (45) = A1  A1  A2  = A1  A2  = A2. 
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 We therefore conclude that as the transition is not allowed with polarizations x or y or z, 

the transition from the ground state to the first excited state (0  45 ) is symmetry-

forbidden. 

 What about a transition from ground to the second excited state 46? 

 (0 x46) = (0) (x) (45) = A1  B1  B1  = A1  A1 = A1 

 (0 y46)  = (0) (y) (45) = A1  B2  B1  = B2  B1   = A2 

 (0 z46)  = (0) (z) (45) = A1  A1  B1  = A1  B1   = B1. 

Of the three TMIs, xM 46,0
, yM 46,0

and zM 46,0
only the integrand in xM 46,0

has A1 symmetry.  So a 

transition from the ground state to the second excited state (0  46 ) is symmetry-

allowed with x polarization. 

 

The polarization of a spectroscopic transition 

 Recall our discussion at the start of this section in which a picture was presented of a 

molecule’s electrons being polarized by the oscillating electric field of the incident 

radiation.  The resulting induced electric dipole moment may couple with the field, 

absorbing a photon of the appropriate frequency so as to bring about a spectroscopic 

transition.  But the last calculation showed that in order for a transition to occur several 

conditions must be fulfilled, involving the symmetries of the states and the direction in which 

the radiation’s electric field vector oscillates.  The results of some of the 0  46 

calculation are summarised in the diagram below. 

 If the pentalene were in a fixed position such as in a crystal lattice and irradiated with 

polarized light the 0   46 transition would occur only if the electric field comes in 

oscillating parallel to the molecule’s x axis.  There are several ways in which this could 

happen, and the sketch shows one of them, in which the light beam is directed along the y 

axis so that the light is xy plane polarized.  If now the light beam were rotated around the z 

axis (which is perpendicular to the molecular plane) the absorption should decrease because 

the component of the molecule’s x axis with the electric field is diminishing.  When the beam 

reaches the x axis there is no absorption because the electric field is now parallel to y and, 

as demonstrated in the calculation, the transition is  
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forbidden.  Further rotation around z would restore the field to an alignment in which the 

transition is allowed again.  This is shown in the Figure, where the crystal is initially held 

with the molecule’s x axis parallel with the direction of the polarization of the radiation ( = 

0°).  As the crystal is rotated through 90° the signal diminishes until it vanishes, and would 

start to reappear at  > 90°.  It is an example of single-crystal spectroscopy, in which the 

spectrum depends on the relative positions of the crystal sample and the incident beam. 

 Instead of rotating the polarized radiation, the beam could be kept fixed and the crystal 

realigned, which for technical reasons is much easier.  But what happens if the molecule 

were not fixed in a lattice site but is continuously re-orientating as it would if it were a 

liquid, e.g. in solution?  In such a state the re-orientation motion means that the molecule 

presents different ‘postures’ to the radiation’s electric field vector.  At any instant there are 

molecules whose y axes make a range of orientations with the electric field of the radiation.  

So there will always be enough of them for the 0   46 to be observed and the transition 

is simply allowed (without any reference to polarization).  For a molecule in the liquid state, 

therefore, in order for an electric dipole transition to be allowed it is necessary only for at 

least one of the three TMIs, xM 46,0 , yM 46,0  and zM 46,0  to be non-zero.  


