

Acid/base equilibria.

Figures 3 and 4.14, page 520
Atkins/Jones: Chemistry: Molecules, Matter, and Change, **3e**9 997 by P W Atkins and L. L. Jones

Acid strength: the acid dissociation constant K_A .

Chemistry³ Section 6.2. pp.268-270.

- It is easy to quantify the strength of strong acids since they fully dissociate to ions in solution.
- The situation with respect to weak acids is more complex since they only dissociate to a small degree in solution.
- The question is how small is small?
- We quantify the idea of incomplete dissociation of a weak acid HA by noting that the dissociation reaction is an equilibrium process and introducing the acid dissociation constant K_A.

 K_A values vary over a wide range so it is best to use a log scale.

$$HA(aq)+H_2O(1)$$
 \longrightarrow $H_3O^+(aq)+A^-(aq)$

$$K_{C} = \frac{[H_{3}O^{+}][A^{-}]}{[HA][H_{2}O]}$$

$$K_{A} = K_{C}[H_{2}O] = \frac{[H_{3}O^{+}][A^{-}]}{[HA]}$$

Acid dissociation constant

 K_A is a measure of the acid strength. When K_A is large there is considerable Dissociation and the acid is strong. When K_A is small there is a small degree of dissociation, and the acid is weak.

$$pK_A = -\log_{10} K_A$$

The Meaning of K_A , the Acid Dissociation Constant

For the ionization of an acid, HA:

$$K_{c} = \frac{[H_{3}O^{+}][A^{-}]}{[HA][H_{2}O]}$$
Since the concentration of water is high, and does not change significantly during the reaction, it's value is absorbed into the constant.

Therefore:
$$K_{c} = \frac{[H_{3}O^{+}][A^{-}]}{[HA]}$$
The stronger the acid, the higher the $[H_{3}O^{+}]$ at equilibrium, and the larger the K_{a} :

Stronger acid higher $[H_{3}O^{+}]$ larger K_{a}

For a weak acid with a relative high K_a (~10⁻²), a 1 M solution has ~10% of the HA molecules dissociated.

For a weak acid with a moderate K_a (~10⁻⁵), a 1 M solution has ~ 0.3% of the HA molecules dissociated.

For a weak acid with a relatively low K_a (~10⁻¹⁰), a 1 M solution has ~ 0.001% of the HA molecules dissociated.

Acid strengths and K_a value.

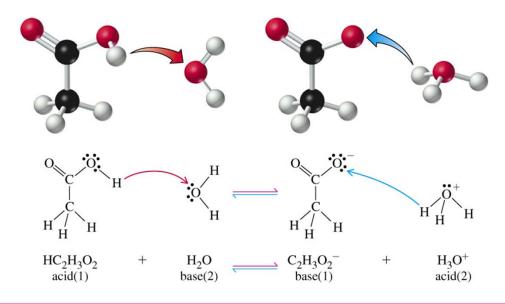
Table 6.2 Acidity constants (K_a) and values of p K_a for some common acids at 298 K

Acid		$K_{\rm a}/{\rm moldm^{-3}}$	pK_a		
Hydriodic acid	HI	1×10^{10}	-10	Strongest	
Perchloric acid [chloric(VII) acid]	HClO ₄	1×10^{10}	-10	acid	
Hydrobromic acid	HBr	1×10^9	-9	4	Strong
Hydrochloric acid	HCl	1×10^7	-7		acids
Sulfuric acid [sulfuric(VI) acid]	H ₂ SO ₄	1×10^3	-3		
Nitric acid [nitric(V) acid]	HNO_3	25	-1.4		
Trichloroethanoic acid	CCl ₃ CO ₂ H	2.2×10^{-1}	0.66		
Chlorous acid [chloric(III) acid]	HClO ₂	1.1×10^{-2}	1.94		
Hydrofluoric acid	HF	6.3×10^{-4}	3.20		
Nitrous acid [nitric(III) acid]	HNO ₂	5.6×10^{-4}	3.25		
Methanoic acid	HCO ₂ H	1.8×10^{-4}	3.75		
Benzoic acid	$C_6H_5CO_2H$	6.3×10^{-5}	4.20		Weak
Ethanoic acid	CH ₃ CO ₂ H	1.7×10^{-5}	4.76		acids
Propanoic acid	$\mathrm{CH_{3}CH_{2}CO_{2}H}$	1.3×10^{-5}	4.87		
Carbonic acid	H_2CO_3	4.5×10^{-7}	6.35		
Hypochlorous acid [chloric(I) acid]	HOCI	4.0×10^{-8}	7.40		
Hydrocyanic acid	HCN	6.2×10^{-10}	9.21	Weakest	
Phenol	C ₆ H ₅ OH	1.0×10^{-10}	9.99	acid	

The Relationship Between K_a and pK_a

Acid Name (Formula)	K _A at 298 K	р <i>К_А</i>
Hydrogen sulfate ion (HSO ₄ -)	1.02×10^{-2}	1.991
Nitrous acid (HNO ₂)	7.1×10^{-4} K_A pK_A	3.15
Acetic acid (CH ₃ COOH)	1.8×10^{-5}	4.74
Hypobromous acid (HBrO)	2.3 × 10 ⁻⁹	8.64
Phenol (C ₆ H ₅ OH)	1.0×10^{-10}	10.00

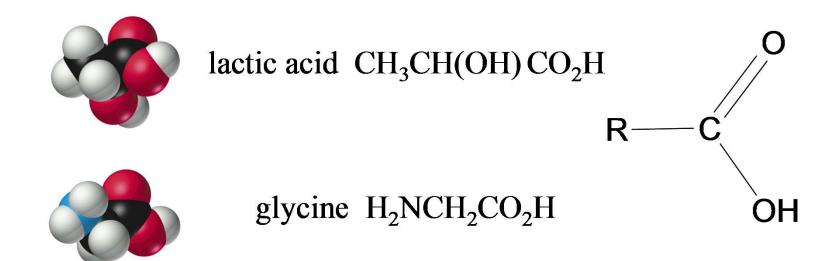
When K_A is small pK_A is large and the acid does not dissociate in solution to a large extent. A change in 1 pK_A unit implies a 10 fold change in K_A value and hence acid strength.


K_a and pK_a

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Acid Name (Formula)	K _a at 25°C	р <i>К</i> а	
Hydrogen sulfate ion (HSO ₄ ⁻)	1.02×10^{-2}	1.991	
Nitrous acid (HNO ₂)	7.1×10^{-4}	3.15	Acid
Acetic acid (CH ₃ COOH)	1.8×10^{-5}	4.74	Strength
Hypobromous acid (HBrO)	2.3×10^{-9}	8.64	decreases
Phenol (C ₆ H ₅ OH)	1.0×10^{-10}	10.00	•

$$pK_A = -\log_{10} K_A$$


pKa calculation

$$K_{\rm a} = \frac{[{\rm CH_3CO_2}^{-}][{\rm H_3O^+}]}{[{\rm CH_3CO_2H}]} = 1.8 \times 10^{-5}$$

$$pK_a = -\log(1.8 \times 10^{-5}) = 4.74$$

Weak acids

Acid-Base Properties of Water

$$H_2O(l) \longrightarrow H^+(aq) + OH^-(aq)$$

autoionization of water

base conjugate acid
$$H_2O + H_2O \longrightarrow H_3O^+ + OH^-$$
acid conjugate base

Autoionization of Water

$$H_2O_{(1)} + H_2O_{(1)}$$
 \longrightarrow $H_3O^+ + OH^-$

$$K_c = \frac{[H_3O^+][OH^-]}{[H_2O]^2}$$

The ion-product for water, K_{w} :

$$K_c[H_2O]^2 = K_w = [H_3O^+][OH^-] = 1.0 \times 10^{-14} \text{ (at 298K)}$$

For pure water the concentration of hydroxyl and hydronium ions must be equal:

$$[H_3O^+] = [OH^-] = \sqrt{1.0 \times 10^{-14}} = 1.0 \times 10^{-7} M \text{ (at } 25^{\circ}C)$$

The molarity of pure water is:
$$\frac{1000g/L}{18.02 g/mol} = 55.5 M$$

The Ion Product of Water

$$H_2O(I) \longrightarrow H^+(aq) + OH^-(aq) \quad K_c = \frac{[H^+][OH^-]}{[H_2O]} \quad [H_2O] = constant$$

$$K_c[H_2O] = K_w = [H^+][OH^-]$$

The *ion-product constant* (K_w) is the product of the molar concentrations of H⁺ and OH⁻ ions at a particular temperature.

At 25° C $K_w = [H^+][OH^-] = 1.0 \times 10^{-14}$

$$[H^+] = [OH^-]$$
 neutral $[H^+] > [OH^-]$ acidic $[H^+] < [OH^-]$ basic

Solution Is

Table 6.3 The effect of temperature on $K_{\rm w}$ and the pH of pure water

Temperature / °C	Temperature / K	$K_{\rm w}/{ m mol^2dm^{-6}}$	рН
0	273	1.5×10^{-15}	7.41
10	283	3.0×10^{-15}	7.26
20	293	6.8×10^{-15}	7.08
25	298	1.0×10^{-14}	7.00
30	303	1.5×10^{-14}	6.91
40	313	3.0×10^{-14}	6.76
50	323	5.5×10^{-14}	6.63
60	333	9.5×10^{-14}	6.51

Weak Bases and Base Ionization Constants

$$NH_3 (aq) + H_2O (I) \longrightarrow NH_4^+ (aq) + OH^- (aq)$$

$$K_b = \frac{[NH_4^+][OH^-]}{[NH_3]}$$
 K_b
weak base strength

 K_b = base ionization constant

Basicity Constant K_b.

$$B(aq) + H_2O(1)$$
 \longrightarrow $BH^+(aq) + OH^-(aq)$

- The proton accepting strength of a base is quantified in terms of the basicity constant K_b.
- The larger the value of K_b , the stronger the base.
- If K_b is large then pK_b will be small, and the stronger will be the base.
- Solve weak base problems like weak acids except solve for [OH-] instead of [H+].

$$K_{C} = \frac{\begin{bmatrix} BH^{+} \end{bmatrix} OH^{-} \end{bmatrix}}{\begin{bmatrix} B \end{bmatrix} H_{2}O \end{bmatrix}}$$

$$K_{b} = K_{C} [H_{2}O] = \frac{\begin{bmatrix} BH^{+} \end{bmatrix} OH^{-} \end{bmatrix}}{\begin{bmatrix} B \end{bmatrix}}$$

$$pK_b = -\log_{10} K_b$$

$$K_a K_b = K_W$$
$$pK_a + pK_b = pK_W$$

Ionization Constants of Conjugate Acid-Base Pairs

$$HA (aq) \rightleftharpoons H^{+} (aq) + A' (aq) \qquad K_{a}$$

$$A^{-} (aq) + H_{2}O (I) \rightleftharpoons OH^{-} (aq) + HA (aq) \qquad K_{b}$$

$$H_{2}O (I) \rightleftharpoons H^{+} (aq) + OH^{-} (aq) \qquad K_{w}$$

$$K_{a}K_{b} = K_{w}$$

Weak Acid and Its Conjugate Base

$$K_a = \frac{K_w}{K_b} \qquad K_b = \frac{K_w}{K_a}$$

Acid and base dissociation constants

	Ionization Equilibrium	Ionization Constant <i>K</i>	pK	
Acid		$K_{\mathbf{a}} =$	$pK_a =$	
Iodic acid	$HIO_3 + H_2O \rightleftharpoons H_3O^+ + IO_3^-$	1.6×10^{-1}	0.80	1
Chlorous acid	$HCIO_2 + H_2O \rightleftharpoons H_3O^+ + CIO_2^-$	1.1×10^{-2}	1.96	
Chloroacetic acid	$HC_2H_2CIO_2 + H_2O \rightleftharpoons H_3O^+ + C_2H_2CIO_2^-$	1.4×10^{-3}	2.85	
Nitrous acid	$HNO_2 + H_2O \Longrightarrow H_3O^+ + NO_2^-$	7.2×10^{-4}	3.14	
Hydrofluoric acid	$HF + H_2O \Longrightarrow H_3O^+ + F^-$	6.6×10^{-4}	3.18	4
Formic acid	$HCHO_2 + H_2O \rightleftharpoons H_3O^+ + CHO_2^-$	1.8×10^{-4}	3.74	Acid strength
Benzoic acid	$HC_7H_5O_2 + H_2O \iff H_3O^+ + C_7H_5O_2^-$	6.3×10^{-5}	4.20	str
Hydrazoic acid	$HN_3 + H_2O \Longrightarrow H_3O^+ + N_3^-$	1.9×10^{-5}	4.72	P.
Acetic acid	$HC_2H_3O_2 + H_2O \implies H_3O^+ + C_2H_3O_2^-$	1.8×10^{-5}	4.74	¥
Hypochlorous acid	$HOCI + H_2O \Longrightarrow H_3O^+ + OCI^-$	2.9×10^{-8}	7.54	
Hydrocyanic acid	$HCN + H_2O \rightleftharpoons H_3O^+ + CN^-$	6.2×10^{-10}	9.21	
Phenol	$HOC_6H_5 + H_2O \rightleftharpoons H_3O^+ + C_6H_5O^-$	1.0×10^{-10}	10.00	
Hydrogen peroxide	$H_2^{\circ}O_2^{\circ} + H_2^{\circ}O \Longrightarrow H_3^{\circ}O^+ + HO_2^{\circ}$	1.8×10^{-12}	11.74	
Base		$K_{\mathbf{b}} =$	$pK_b =$	
Diethylamine	$(C_2H_5)_2NH + H_2O \iff (C_2H_5)_2NH_2^+ + OH^-$	6.9×10^{-4}	3.16	1 = 1
Ethylamine	$C_2H_5NH_2 + H_2O \implies C_2H_5NH_3^+ + OH^-$	4.3×10^{-4}	3.37	E
Ammonia	$NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$	1.8×10^{-5}	4.74	틸
Hydroxylamine	$HONH_2 + H_2O \rightleftharpoons HONH_3^+ + OH^-$	9.1×10^{-9}	8.04	Base strength
Pyridine	$C_5H_5N + H_2O \rightleftharpoons C_5H_5NH^+ + OH^-$	1.5×10^{-9}	8.82	Bas
Aniline	$C_6H_5NH_2 + H_2O \rightleftharpoons C_6H_5NH_3^+ + OH^-$	7.4×10^{-10}	9.13	

Determining a Value of K_A from the pH of a Solution of a Weak Acid.

Butyric acid, $HC_4H_7O_2$ (or $CH_3CH_2CO_2H$) is used to make compounds employed in artificial flavorings and syrups. A 0.250 M aqueous solution of $HC_4H_7O_2$ is found to have a pH of 2.72. Determine K_A for butyric acid.

$$HC_4H_7O_2 + H_2O \rightarrow C_4H_7O_2 + H_3O^+$$
 $Ka = ?$

For $HC_4H_7O_2$ K_A is likely to be much larger than K_W .

Therefore assume self-ionization of water is unimportant.

$$HC_4H_7O_2 + H_2O \rightarrow C_4H_7O_2 + H_3O^+$$

Initial conc.	0.250 M	0	0
Changes	-x M	+ <i>x</i> M	+ <i>x</i> M
Equilbrm. conc.	(0.250- <i>x</i>) M	<i>x</i> M	<i>x</i> M

$$Log[H_3O^+] = -pH = -2.72$$

$$[H_3O^+] = 10^{-2.72} = 1.9 \times 10^{-3} = x$$

$$K_{\rm a} = \frac{[{\rm H}_3{\rm O}^+] [{\rm C}_4{\rm H}_7{\rm O}_2^-]}{[{\rm HC}_4{\rm H}_7{\rm O}_2]} = \frac{1.9{\rm x}10^{-3} \cdot 1.9{\rm x}10^{-3}}{(0.250 - 1.9{\rm x}10^{-3})}$$

$$K_a = 1.5 \times 10^{-5}$$
 Check assumption: $K_a >> K_W$.

SAMPLE PROBLEM 18.7: Determining Concentrations from K_a and Initial [HA]

PROBLEM: Propanoic acid (CH₃CH₂COOH, which we simplify and HPr) is an organic acid whose salts are used to retard mold growth in foods. What is the [H₃O+] of 0.10M HPr (K_a = $1.3x10^{-5}$)?

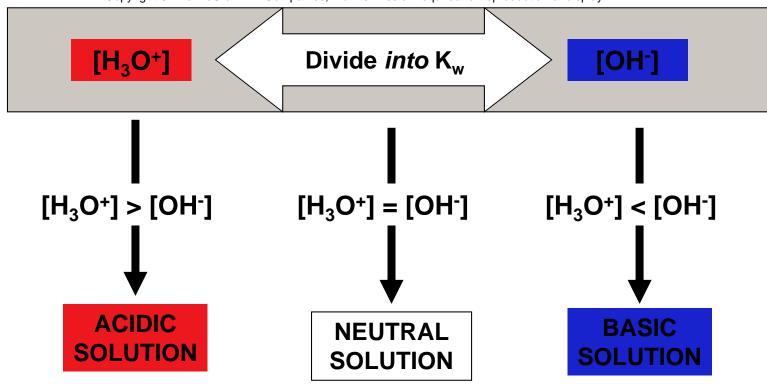
PLAN: Write out the dissociation equation and expression; make whatever assumptions about concentration which are necessary; substitute.

Assumptions: For HPr(
$$aq$$
) + H₂O(l) \longrightarrow H₃O⁺(aq) + Pr⁻(aq)
$$x = [HPr]_{diss} = [H_3O^+]_{from \ HPr} = [Pr^-] \qquad K_a = \underline{[H_3O^+][Pr^-]}$$
SOLUTION: [HPr]

Concentration(M)	HPr(aq) +	H ₂ O(<i>l</i>)	\longrightarrow H ₃ O ⁺ (aq)	+ Pr⁻(<i>aq</i>)	
Initial	0.10	-	0	0	
Change	-X	-	+ <i>X</i>	+ <i>X</i>	
Equilibrium	0.10- <i>x</i>	-	X	X	

Since K_a is small, we will assume that x << 0.10

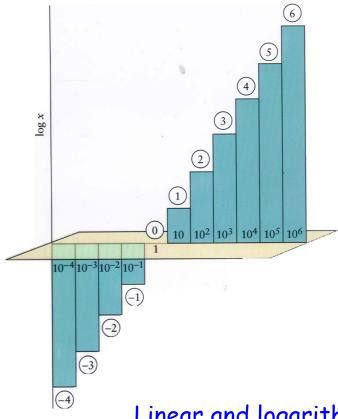
SAMPLE PROBLEM 18.7: Determining Concentrations from K_a and Initial [HA]


continued

$$1.3x10^{-5} = \frac{[H_3O^+][Pr^-]}{[HPr]} = \frac{(x)(x)}{0.10}$$
$$\mathbf{x} = \sqrt{(0.10)(1.3x10^{-5})} = 1.1x10^{-3}M = [H_3O^+]$$

Check: $[HPr]_{diss} = 1.1x10^{-3}M/0.10M \times 100 = 1.1\%$

The relationship between $[H_3O^+]$ and $[OH^-]$ and the relative acidity of solutions.


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

The pH concept.

- The best quantitative measure of acidity or alkalinity rests in the determination of the concentration of hydrated protons [H₃O⁺] present in a solution.
- The [H₃O⁺] varies in magnitude over quite a large range in aqueous solution, typically from 1 M to 10⁻¹⁴ M.
- Hence to make the numbers meaningful [H₃O⁺] is expressed in terms of a logarithmic scale called the pH scale.
- The higher the [H₃O⁺], the more acidic the solution and the lower is the solution pH.

$$pH = -\log_{10} \left[H_3 O^+ \right]$$
$$\left[H_3 O^+ \right] = 10^{-pH}$$

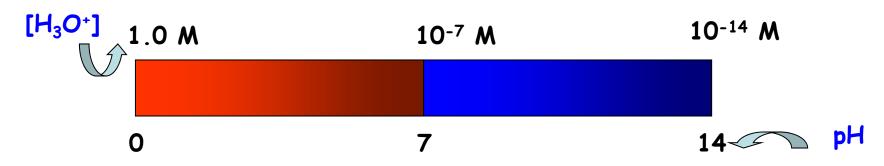
Linear and logarithmic Scales.

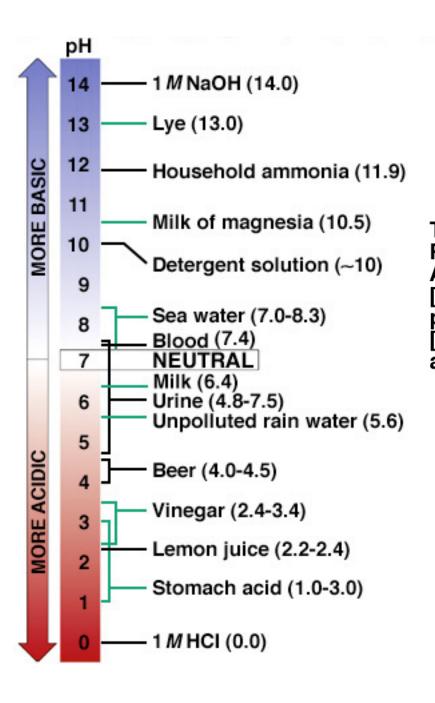
Strong acids and bases

TABLE 17.2 The Common Strong Acids and Strong Bases

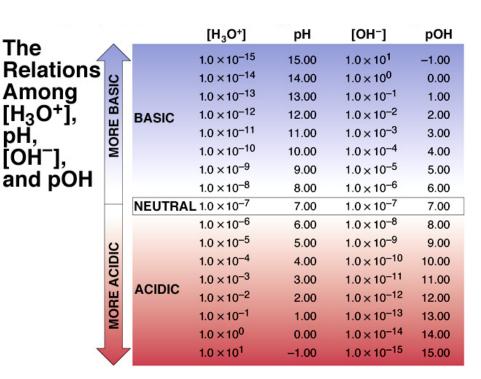
Acids	Bases
HC1	LiOH
HBr	NaOH
HI HClO₄	KOH RbOH
HNO ₃	CsOH
$H_2SO_4^a$	$Mg(OH)_2$
	$Ca(OH)_2$
	$Sr(OH)_2$
	$Ba(OH)_2$

^aH₂SO₄ ionizes in two distinct steps. It is a strong acid only in its first ionization (see page 687).


HCI CH₃CO₂H



Thymol Blue Indicator


The pH Scale.

- pH is expressed on a numerical scale from 0 to 14.
- When $[H_3O^+] = 1.0 \text{ M}$ (i.e. 10^0M), pH = 0.
- When $[H_3O^+] = 10^{-14} \text{ M}$, pH = 14.
- pH value < 7 implies an acidic solution.
- pH value > 7 implies an alkaline solution.
- pH value = 7 implies that the solution is neutral.
- The definition of pH involves logarithms. Hence a change in one pH unit represents a change in concentration of H_3O^+ ions by a factor of 10.

The pH Values of Some Familiar Aqueous Solutions

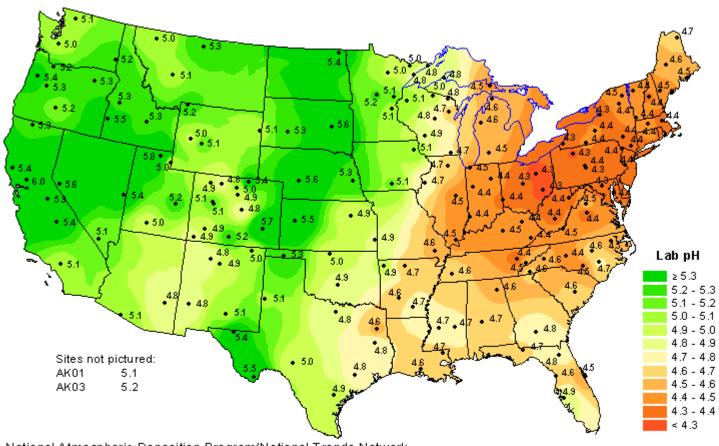
$$pH = -\log_{10} \left[H_3 O^+ \right]$$
$$pOH = -\log_{10} \left[OH^- \right]$$

pH - A Measure of Acidity

Solution Is	At 25°C			
neutral	[H ⁺] = [OH ⁻]	$[H^+] = 1 \times 10^{-7}$	pH = 7	
acidic	[H ⁺] > [OH ⁻]	$[H^+] > 1 \times 10^{-7}$	pH < 7	
basic	[H ⁺] < [OH ⁻]	$[H^+] < 1 \times 10^{-7}$	pH > 7	

Calculating [H₃O⁺], pH, [OH⁻], and pOH

PROBLEM: In a restoration project, a conservator prepares copper-plate etching solutions by diluting concentrated HNO₃ to 2.0M, 0.30M, and 0.0063M HNO₃. Calculate [H₃O⁺], pH, [OH⁻], and pOH of the three solutions at 25°C.


PLAN: HNO₃ is a strong acid so $[H_3O^+] = [HNO_3]$. Use K_w to find the $[OH^-]$ and then convert to pH and pOH.

SOLUTION: For 2.0M HNO₃, $[H_3O^+] = 2.0M$ and $-log [H_3O^+] = -0.30 = pH$ $[OH^-] = K_w/[H_3O^+] = 1.0x10^{-14}/2.0 = 5.0x10^{-15}M$; pOH = 14.30

For 0.3M HNO₃, $[H_3O^+] = 0.30M$ and $-log [H_3O^+] = 0.52 = pH$ $[OH^-] = K_w/[H_3O^+] = 1.0x10^{-14}/0.30 = 3.3x10^{-14}M$; pOH = 13.48

For $0.0063M \text{ HNO}_3$, $[H_3O^+] = 0.0063M \text{ and -log } [H_3O^+] = 2.20 = \text{pH}$ $[OH^-] = K_w / [H_3O^+] = 1.0 \times 10^{-14} / 6.3 \times 10^{-3} = 1.6 \times 10^{-12} \text{M}$; pOH = 11.80

Hydrogen ion concentration as pH from measurements made at the Central Analytical Laboratory, 1997

National Atmospheric Deposition Program/National Trends Network http://nadp.sws.uiuc.edu

The problem of acid rain.

Methods for Measuring the pH of an Aqueous Solution

(a) pH paper

(b) Electrodes of a pH meter

pH Measurement.

- Approximate pH of a solution determined by use of acid/base indicators.
 - Indicators are substances (weak acids) which change colour over a specific pH range when they donate protons.
 - We add a few drops of indicator (which changes colour over the required pH range) to the test solution and record the colour change produced.
 - This procedure is utilized in acid/base titrations. Universal indicator (mixture of pH indicators) often used for making approximate pH measurements in range 3-10.
 - As solution pH increases, the indicator changes colour from red to orange to yellow to green to blue, and finally to purple.
- $HIn(aq) + H_2O \rightarrow H_3O^+(aq) + In^-$

- More accurate pH values determined using an electronic instrument called a pH meter.
 - The device (consisting of a probe electrode made of glass and associated electronics) measures the electrical potential generated across a glass membrane (which separates an internal solution of known [H₃O⁺] from the external test solution of unknown [H₃O⁺]) located at the electrode tip.
 - This membrane potential is proportional to the pH of the test solution.
 - A digital readout of solution pH is obtained.
 - The pH meter is essentially a voltmeter connected to a chemical sensor probe which is sensitive to the concentration of hydrated protons.
 - The pH meter is an example of a potentiometric chemical sensor system. In a potentiometric chemical sensor, the measured voltage is proportional to the logarithm of the analyte concentration.

pH calculation: strong and weak acids.

- If acid is strong have complete dissociation then [H⁺] can be directly evaluated from stoichiometry of ionization reaction. Hence pH can be evaluated via its defining equation.
- For weak acids have incomplete ionization. To evaluate [H⁺] and hence pH we need to evaluate degree of ionization α and we also require a knowledge of K_a.

$$\alpha = \sqrt{\frac{K_a}{c}}$$

$$[H_3O^+] = \sqrt{cK_a}$$

$$c = [HA]$$

$$pH = log_{10}[H_3O^+] = log_{10}\{\sqrt{cK_a}\}$$

Evaluation of degree of dissociation and pH of weak acid solutions.

$$HA(aq) + H_2O(1)$$
 $H_3O^+(aq) + A^-(aq)$
2 $H_2O(1)$ $H_3O^+(aq) + OH^-(aq)$

Assume that weak acid dissociation process is predominant and neglect self ionisation of water.

[HA] = c = initial concentration of weak acid (mol L⁻¹). α = degree of ionisation .

	$HA(aq) + H_2O$ (1)	 $H_3O^+(aq)$	$+A^{-}(aq)$	
Initial concentrations	c	0	0	
Equilibrium concentrations	(1-α) c	α c	αс	$0 < \alpha < 1$

The acid dissociation constant is given by:

$$K_{a} = \frac{\left[H_{3}O^{+}\right]_{eq}\left[A^{-}\right]_{eq}}{\left[HA\right]_{eq}} = \frac{\alpha c.\alpha c}{(1-\alpha)c} = \frac{\alpha^{2}c}{1-\alpha}$$

We solve for α to get a quadratic equation :

$$c\alpha^{2} + K_{a}\alpha - K_{a} = 0$$

$$\alpha = \frac{\sqrt{K_{a}^{2} + 4cK_{a}} - K_{a}}{2c}$$

Once α is known we can work out $[H_3O^+]$ and hence the solution pH since :

$$[H_3O^+] = \alpha c = \sqrt{\frac{K_a^2}{4} + cK_a} - \frac{K_a}{2}$$

Useful approximation.

If α is small (valid if the acid is weak) then $\alpha << 1$ We set $1 - \alpha = 1$

$$\alpha \cong \sqrt{\frac{K_a}{c}}$$
$$\left[H_3O^+\right] \cong \sqrt{cK_a}$$