

Ideal Gas behaviour: summary

- We recall the conditions under which the ideal gas equation of state $P V=n R T$ is valid:
- Volume of individual gas
molecules is neglected
- No interactions (either attractive or repulsive) exis \dagger amongst the molecules.
- These are not very reasonable assumptions. However the ideal gas approximation is useful for many gases at high temperatures or moderately low (< 10 atm) pressures, i.e. dilute gases.
- In the context of the kinetic molecular theory an ideal gas is one for which the mean free path λ (the distance over which the gas molecules travel before they experience collision) of the molecules is much greater than the collision diameter d.
- Also in an ideal gas the only contribution to the internal energy comes from the translational kinetic energy of the gas molecules. There is no contribution from the potential energy arising from interactions of gas molecules with each other.
- We now examine the behaviour of real gases.

Breakdown of ideal gas behaviour : Low temperature and high pressure.

Real Gases

Assume that a gas sample is compressed using a piston.
As the gas undergoes compression the individual molecules are brought closer together: the finite volume of the individual molecules will become important and these molecules will interact with one another.
Hence finite molecular size and intermolecular interactions will be important in
the description of real gases.
Deviations from ideal gas behaviour will therefore be observed as the gas becomes more dense

Fig. 1.13 The variation of the potential energy of two molecules on their separation. High positive potential energy the interactions between them are strongly
repulsive at these distances. At
intermediate separations, where the
potential energy is negative, the attractive
interactions dominate. At large separations
(on the right) the potential energy is zero
ad there is no interaction between the
molecules.

Significant molecular interactions present Volume of individual gas molecules cannot be neglected compared with overall volume of gas.

Compressibility (Compression) Factor

We can express the extent of deviation from ideal behaviour as a function of pressure (which is related to the density of the gas) by introducing a quantity called the Compressibility or Compression factor Z.

$$
Z=\frac{P V}{n R T}=\frac{P V_{m}}{R T}
$$

For an ideal gas $Z=1$, and real gases exhibit Z values different from unity. Z values may be explained in terms of the operation of intermolecular forces.

At low pressures the molecules are far apart and the predominant intermolecular interaction is attraction. The molar volume V_{m} is less than that expected for an ideal gas: intermolecular forces tend to draw the molecules together and so reduce the space which they occupy. Under such conditions we expect that $Z<1$.

As the pressure is increased the average distance of separation between molecules decreases and repulsive interactions between molecules become more important. Under such conditions we expect that $Z>1$. When $Z>1$, the molar volume is greater than that exhibited by an ideal gas: repulsive forces tend to drive the molecules apart.

Fig. 1.14 The variation of the compression factor, Z, with pressure for several gases at A perfect gas has $Z=1$ at all pressure Notice that, although the curves approach 1 as $p \rightarrow 0$, they do so with different slopes

Virial equation of state

The observation of $a Z$ factor different from unity can be used to construct an empirical or observation based equation of state, by supposing that the ideal gas equation of state is only the first term of a more complex expression which can be expressed in terms of a mathematical power series. This is called the Virial equation of state.

$$
Z=\frac{P V_{m}}{R T}=1+\frac{B}{V_{m}}+\frac{C}{V_{m}{ }^{2}}+\ldots . .=1+B^{\prime} P+C^{\prime} P^{2}
$$

$\frac{P V_{m}}{R T} \rightarrow 1$
$V_{m} \rightarrow \infty$
$P \rightarrow 0$

$p=0$: Close to ideal gas law, but not exact
p increases: B contributes, linear relation between Z and P
p higher: C and higher order terms contribute, deviation from linearity

Note that the virial coefficients B, C, B^{\prime} and C^{\prime} are obtained by fitting the experimental Z vs P data to the virial equation of state. Their values depend on the identity of the gas and Reflect the presence of intermolecular forces and interactions.
When the pressure P is small the molar volume V_{m} will be very large and so the second and third terms in the virial series will be very small and to a good approximation the virial equation of state reduces to the ideal gas equation of state.

Virial: comes from that Latin word vis, viris, meaning force - the coefficients in the virial equation depend on the forces of interaction between molecules of the gas

Boyle Temperature

Fig. 1.16 The compression factor, Z,
approaches 1 at low pressures, but does so with different slopes. For a perfect gas, the slope is zero, but real gases may have either positive or negative slopes, and the slope may vary with temperature. At the Boyle temperature the slope is zero and the ga temperature, the slope is zero and the gas conditions than at other temperatures.

In a perfect gas $d Z / d P=0($ since $Z=1)$. In a real gas the result is different.

$$
\begin{aligned}
& \frac{d Z}{d P}=B^{\prime}+2 P C^{\prime}+\ldots \cong B^{\prime} \text { as } \mathrm{P} \rightarrow 0 \\
& \frac{\mathrm{dZ}}{\mathrm{~d}\left(1 / \mathrm{V}_{\mathrm{m}}\right)} \cong B \text { as } \mathrm{V}_{\mathrm{m}} \rightarrow \infty
\end{aligned}
$$

At low T the initial $d Z / d P<0, B$ is negative. $A t$ high T the initial $d Z / d P>0$ and B is positive. The temperature at which the initial slope is zero is Termed the Boyle Temperature T_{B} where $B=0$. Here the real gas behaves as an ideal gas.

The virial equation of state (VES) can make sense of the experimentally observed Z versus P data but it is empirical and does not directly tell us how the ideal gas equation of state is modified due to the operation of intermolecular interactions.

The Van der Waals equation of state, although approximate, is based on
 a very simple physical model of intermolecular interactions.

Repulsive Interactions.

The operation of repulsive intermolecular interactions implies that two gas molecules cannot come closer than a certain
distance of each other. Instead of being free to travel anywhere in
a volume V , the actual volume in which the molecule can
travel is reduced by an amount which is proportional to the
number of molecules present and the volume which they
exclude. The volume excluding repulsive forces are modelled by changing the volume term V in the ideal gas equation to $V-n b$, where b represents the proportionality constant between the reduction in volume and the amount of molecules present in the container: it is the excluded volume per mole.

Molecules have finite size. Hence occupy space.

Attractive Interactions.
The presence of attractive interactions between molecules is to reduce the pressure that the gas exerts. The attraction experienced by a given molecule is proportional to the concentration n / V of molecules in the container. Attractive forces slow the molecules down: molecules strike the walls less frequently and with less impact.
Pressure determined by impact of molecules on container walls and is proportional to rate of impact times average strength of impact. Both of these quantities are proportional to the concentration.

Molecules near container wall experience
towardractive force towards body of gas.

Reduction in pressure proportional to $(n / V)^{2}=a(n / V)^{2}$ where a denotes a constant of proportionality which takes account of attractive interactions.
Hence this correction factor should be added to the pressure P to make up for this deficit, and the Pressure term in the ideal gas equation of state is changed from P to $P+a(n / V)^{2}$.

VdW equation of state

Useful limits of the VdW equation of state.

$$
\begin{aligned}
& \left(P+a\left(\frac{n}{V}\right)^{2}\right)(V-n b)=n R T \\
& \left(P+\frac{a}{V_{m}^{2}}\right)\left(V_{m}-b\right)=R T
\end{aligned}
$$

$P\left(V_{m}-b\right)+\frac{a}{V_{m}^{2}}\left(V_{m}-b\right)=R T \quad$| The VdW expression may |
| :--- |
| be recast in another |
| manner |
| which proves useful at |
| higher pressures. |

$P\left(V_{m}-b\right)+a\left(\frac{1}{V_{m}}-\frac{b}{V_{m}^{2}}\right)=R T$

$P\left(V_{m}-b\right) \cong R T$
$P V_{m}=R T+b P$
Now when P is large, the
term $1 / \mathrm{V}_{m}-\mathrm{b} / \mathrm{V}_{\mathrm{m}}{ }^{2}$ is
small and can be
neglected.

as it

ren P is very low then V is very large since P is exprenal to $1 / V$. Then $b \ll V_{m}$ and $a / V_{m}{ }^{2}<P P$ and the $V d W ~$ express.
should.

Hence $P V_{m}<R T$ and decreases with increasing pressure P. The dip observed in the curve of Z versus P is attributed to the $a /$ RTV $_{m}$ term and is due to attractive forces $\begin{aligned} & \left(P+\frac{a}{V_{m}^{2}}\right) V_{m}=R T \\ & P V_{m}=R T-\frac{a}{V_{m}} \\ & Z=\frac{P V_{m}}{R T}=1-\frac{a}{R T V_{m}} \end{aligned}$ which will predominate when molecules are far apart at low pressures.	

At the Boyle temperature $T_{B} d Z / d P=0$ and we can show that $T_{B}=a / b R$.

Now $Z>1$ and increases with increasing pressure P. This rise in Z with P is due to the b term which arises from the operation of repulsive interactions since the latter forces kick in when molecules are close together at high pressure.

Relating the Virial and VdW equations of state.

$$
\left(P+\frac{a}{V_{m}^{2}}\right)\left(V_{m}-b\right)=R T
$$

$V d W$ equation of state

$$
\begin{aligned}
& \text { Compressibility factor VdW } \\
& \text { gas } \\
& \qquad \begin{array}{l}
Z=\frac{P V_{m}}{R T}=\frac{V_{m}}{V_{m}-b}-\frac{a}{V_{m} R T} \\
=\frac{1}{1-\frac{b}{V_{m}}}-\frac{a}{V_{m} R T}
\end{array}
\end{aligned}
$$

Valid for moderate pressure
where $b / V_{m} \ll 1$
ence the second virial coefficient B incorporates terms arising from repulsive and attractive forces. At high temperature when $b R T \gg a$ then repulsive forces predominate, whereas at low temperature when
 bRT << a, attractive forces predominate (gases
condense to liquids at low temperature due to
attractive forces)
When $b R T=a, T=T_{B}$ the Boyle temperature of the gas.

