

		100 K	273 K	373 K	600 K	
	Air	=167.3	-13.5	3.4	19.0	
	An	-187.0	-21.7	-4.2	11.9	
	CH	107.0	-53.6	-21.2	81	
	CO ₃		-142	-72.2	-12.4	
	H.	-2.0	13.7	15.6		
	He	11.4	12.0	11.3	10.4	
	Kr		-62.9	-28.7	1.7	
	N ₂	-160.0	-10.5	6.2	21.7	
	Ne	-6.0	10.4	12.3	13.8	
		107.5	-22.0	-3.7	12.9	
	O ₂	-197.5				
Table 1	O ₂ Xe Data: AIP, JI B' = B/KT. For Ar at 27:	-197.5 . The values relate to the expansic : K, $C = 1200 \text{ cm}^6 \text{ mol}^{-1}$.	-153.7	-81.7	-19.6 ag	
Table 1.0	Q ₂ Xe Data: AIP, II B' = B/RT. For Ar at 27:	- 197.3 . The values relate to the expansio 1 K, C = 1200 cm ⁶ mol ⁻¹ .	-153.7 on in eqn 1.22 of Section 1.	-81.7 b; convert to eqn 1.21 usir	-19.6 ng -2)	b//10-2 day watch
Table 1.	O ₂ Xe Data: AIP, II B ⁻ BIRT. For Ar at 27: 0 van der Waals coefficients a/(atm dm [*] mol ⁻²)	- 197.5 The values relate to the expansio K, C = 1200 cm ⁶ mol ⁻¹ . b/(10 ⁻² dm ³ mol ⁻¹)	-153.7 on in eqn 1.22 of Section 1.	–81.7 b; convert to eqn 1.21 usir a/(atm dm ⁶ mol	-19.6 ag -2)	<i>b</i> /(10 ⁻² dm ³ mol ⁻¹)
Table 1.	O ₂ Xe Date: AIP, II B' = BIRT. For Ar at 27: 0 van der Waals coefficients a/(atm dm ⁶ mol ⁻²) 1.337	-197.5 The values relate to the expansion $K_{s} C = 1200 \text{ cm}^{6} \text{ mol}^{-1}$. $b/(10^{-2} \text{ dm}^{3} \text{ mol}^{-1})$ 3.20	-153.7 on in eqn 1.22 of Section 1. H ₂ S	-81.7 b; convert to eqn 1.21 usir <i>a</i> /(atm dm ⁶ mol 4.484	-19.6 ng -2)	b/(10 ⁻² dm ³ mol ⁻¹) 4.34
Table 1.	0,2 Xe 2,4 2,4 2,4 3,4 4,5 4,5 5,2 2,2 4,5 4,5 2,4 4,5 4,5 5,2 4,5 5,2 4,5 4,5 4,5 4,5 4,5 4,5 4,7 4,5 4,7 4,7 4,7 4,7 4,7 4,7 4,7 4,7	- 197.5 The values relate to the expansic K, C = 1200 cm ⁴ mol ⁻¹ , b/(10 ⁻³ dm ³ mol ⁻¹) 3.20 5.82	–153.7 on in eqn 1.22 of Section 1. H ₂ S He	-81.7 b; convert to eqn 1.21 usir a/(atm dm ⁶ mol 4.484 0.0341	-19.6 ¹⁹ / ₉ -2)	b/(10 ⁻² dm ³ mol ⁻¹) 4.34 2.38
Table 1.4 Ar C ₂ H ₄ C ₂ H ₆	Q ₂ Xe Date: AIP, II B ⁺ = NRT. For Ar at 27: 4 van der Waals coefficients a /(atm dm ⁶ mol ⁻²) 1.37 4.552 5.507	- 197.3 The values relate to the expansio K, C = 1200 cm ⁶ mol ⁻¹ . b/(10 ⁻² dm ³ mol ⁻¹) 3.20 5.82 6.51	-153.7 on in eqn 1.22 of Section 1. H ₂ S He Kr	-81.7 b; convert to eqn 1.21 usir a/(atm dm ⁶ mol 4.484 0.0341 5.125	-19.6 ag	b/(10 ⁻² dm ³ mol ⁻³) 4.34 2.38 1.06
Table 1.0 Ar C2H4 C2H6 C4H6	0,2 Xe Date: AIP, II B' = BIRT. For Ar at 27: 0 van der Waals coefficients a/(atm dm ⁴ mol ⁻²) 1.337 4.552 5.507 18.57	- 197.5 The values relate to the expansion K, <i>C</i> = 1200 cm ⁶ mol ⁻¹ , <i>b</i> /(10 ⁻² dm ³ mol ⁻¹) 3.20 5.82 6.51 11.93 	-133.7 on in eqn 1.22 of Section 1. H ₂ S He Kr N ₂	-81.7 bs convert to eqn 1.21 usir a/(atm dm ⁶ mol 4.484 0.0341 5.125 1.352	-19.6 ag	b/(10 ⁻² dm ³ mol ⁻³) 4.34 2.38 1.06 3.87
Ar C2H4 C2H6 C6H6 CH4	0,2 Xe 2,2 2,2 3 van der Waals coefficients a/(atm dm*mol ⁻²) 1.337 4.552 3.507 18.57 2.273 	-197.5 The values relate to the expansion $k_{\rm K} C = 1200 {\rm cm}^6 {\rm mol}^{-1}$, $b/(10^{-2} {\rm dm}^3 {\rm mol}^{-1})$ 3.20 5.82 6.51 11.93 4.31 	-153.7 on in eqn 1.22 of Section 1. H2S H2 Kr N3 N5 N5 N5	-81.7 ds convert to eqn 1.21 usin <i>al</i> /(atm dm ⁴ mol 4.484 0.3341 5.125 1.352 0.205 0.205	-19.6 ag -2)	b/(10 ⁻² dm ³ mol ⁻¹) 4.34 2.38 1.06 3.87 1.67
Ar C2H4 C2H6 C6H6 CH4 C2	Q ₂ Xe Date: AIP, II B' = NRT. For Ar at 27: 4 552 5.507 18.557 2.273 6.260 4.55 2	- 197.5 - The values relate to the expansio K, C = 1200 cm ⁶ mol ⁻¹ .	-133.7 on in eqn 1.22 of Section 1. H ₂ S H ₂ S H ₆ Kr Nf ₁ Nf ₂ Nf ₃	-81.7 ds convert to eqn 1.21 usir <i>a/(atm.dm⁴ mol</i> 4.484 0.0341 5.125 1.352 0.205 4.109 1.24	-19.6 ag -2)	b/(10 ⁻² dm ³ mol ⁻¹) 4.34 2.38 1.06 3.87 1.67 3.71 2.10
Table 1.4 Ar C ₂ H ₄ C ₂ H ₆ C ₆ H ₆ CH ₄ Cl ₂ CO	0,2 Xe Data: AIP, II B ⁺ = BRT. For Ar at 27: 0 van der Waals coefficients a/(atm dm ⁴ mol ⁻²) 1.337 4.552 5.507 18.57 2.273 6.260 1.453 2.610	-197.5 The values relate to the expansion $K_c C = 1200 \text{ cm}^6 \text{ mol}^{-1}$. $b/(10^{-2} \text{ dm}^3 \text{ mol}^{-1})$ 3.20 5.82 6.51 11.93 4.31 5.42 3.95 4.00	-133.7 on in eqn 1.22 of Section 1. H ₁ S He Kr N ₅ Ne NH ₃ O ₇ O ₇	-81.7 bs convert to eqn 1.21 usin a/(atm dm ⁶ mol 4.484 0.0341 5.125 1.352 0.205 4.169 1.364 6.775	-19.6 ag -2)	b/(10 ⁻² dm ³ mol ⁻³) 4.34 2.38 1.66 3.87 1.67 3.71 3.19 5.ce
Table 1. Ar C2H4 C2H6 C8H6 CCH4 C12 CO CO H	0,2 Xe Date: AIP, II 0"= BIRT. For Ar at 27: 1.337 4.552 5.507 18.57 2.273 6.260 1.453 3.610 0.220	-197.5 The values relate to the expansion $k_{c} C = 1200 \text{ cm}^{6} \text{ mol}^{-1}$. $b/(10^{-2} \text{ dm}^{3} \text{ mol}^{-1})$ 3.20 5.82 6.51 11.93 4.31 5.42 3.95 4.29 2.65	-153.7 on in eqn 1.22 of Section 1. H2S H2 Kr N5 N6 N6 N6 N6 N6 N6 N6 N6 N6 N6 N6 N6 N6	-81.7 ds convert to eqn 1.21 usin a/(atm dm ⁶ mol 4.484 0.0341 5.125 1.352 0.205 4.169 1.364 6.775 4.137	-19.6 ig	b/(10 ⁻² dm ³ mol ⁻¹) 4.54 2.38 1.06 3.87 1.67 3.71 3.71 3.19 5.68 5.16

