




## Lecture 13

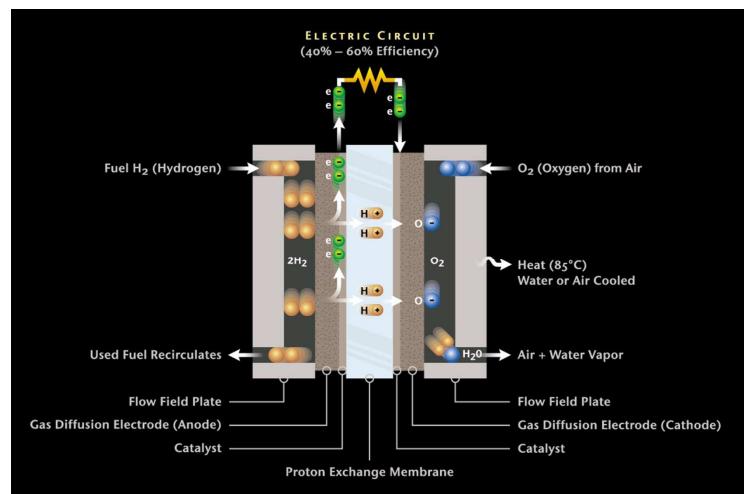
### Thermodynamics of Galvanic (Voltaic) Cells.



51

### Electric power conversion in electrochemistry

Electrolysis / Power consumption


Electric Power

Chemical Reactions

Electrochemical battery / Power generation

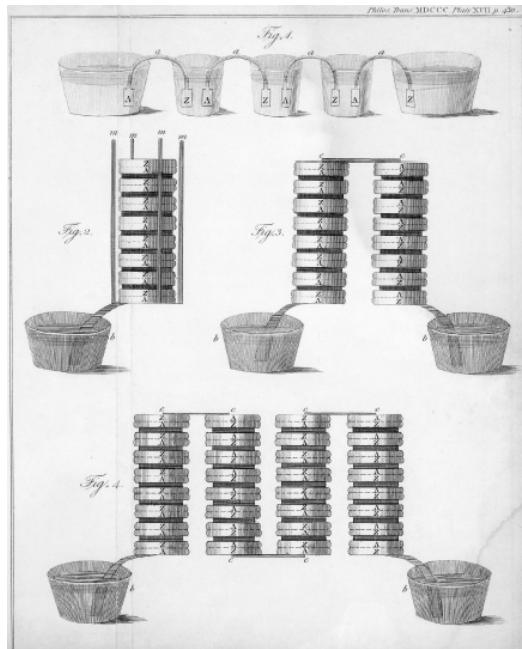
52

## Ballard PEM Fuel Cell.



53

## Electrochemistry




**Alessandro Volta,**  
1745-1827, Italian  
scientist and inventor.



**Luigi Galvani, 1737-1798,**  
Italian scientist and inventor.

54



## The Voltaic Pile

Drawing done by Volta to show the arrangement of silver and zinc disks to generate an electric current.

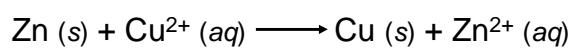
What voltage does a cell generate?

55

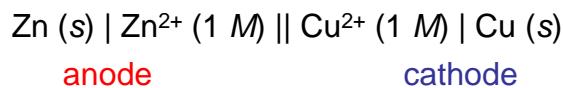
## Operation of a Galvanic cell.


- In a Galvanic cell a spontaneous cell reaction produces electricity.
- Galvanic cells form the basis of energy storage and energy conversion devices (battery systems and fuel cells).
- Electrons leave a Galvanic cell at the anode (negative electrode), travel through the external circuit, and re-enter the cell at the cathode (positive electrode). The circuit is completed inside the cell by the electro-migration of ions through the salt bridge.
- We need to answer the following questions regarding Galvanic cells.
  - Can we devise a quantitative measure for the tendency of a specific redox couple to undergo oxidation or reduction?
  - Is the net cell reaction energetically feasible?
  - Can we compute useful thermodynamic quantities such as the change in Gibbs energy  $\Delta G$  or the equilibrium constant for the cell reaction?
  - The answer is yes to all of these questions.
  - We now discuss the **thermodynamics** of Galvanic cells.

56


## Electrochemical Cells

The difference in electrical potential between the anode and cathode is called:

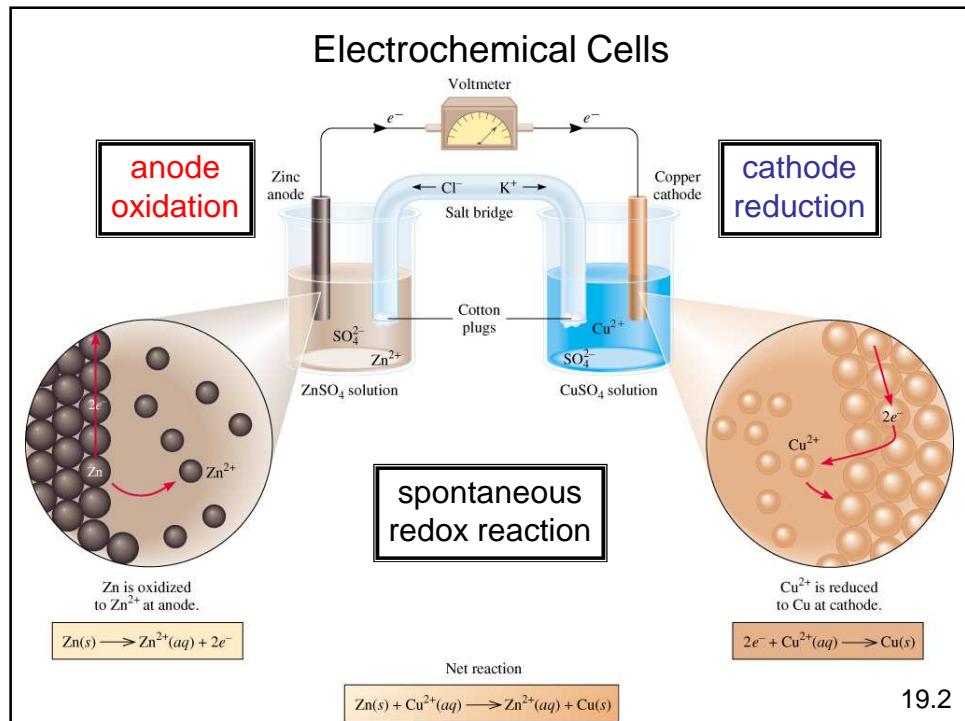
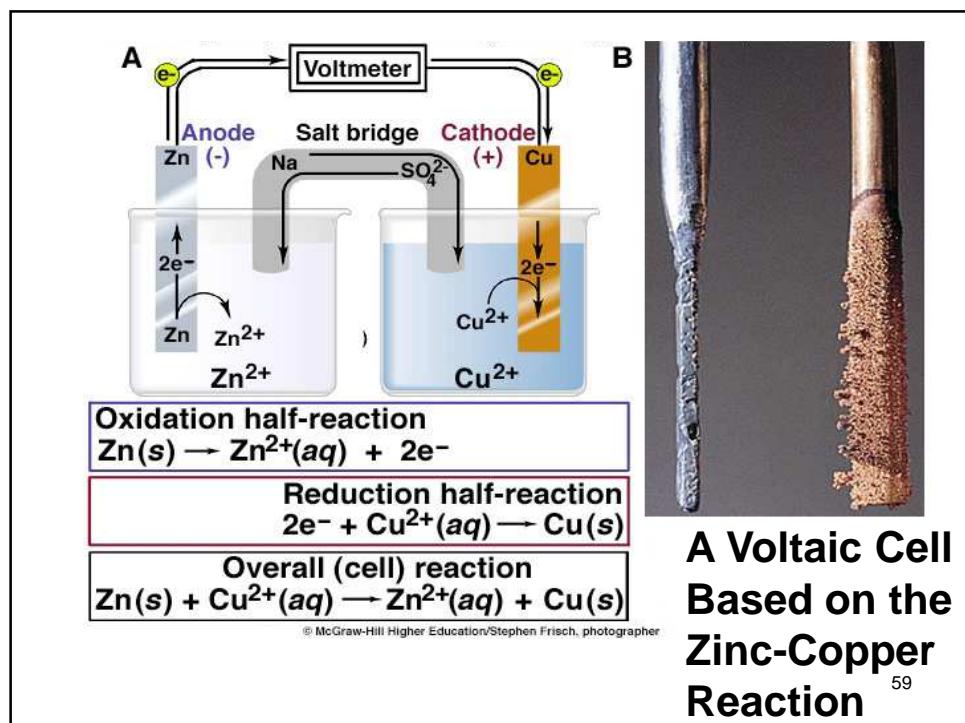

- cell voltage
- electromotive force (emf)
- cell potential



## Cell Diagram



$$[\text{Cu}^{2+}] = 1 \text{ M} \text{ & } [\text{Zn}^{2+}] = 1 \text{ M}$$


57  
19.2

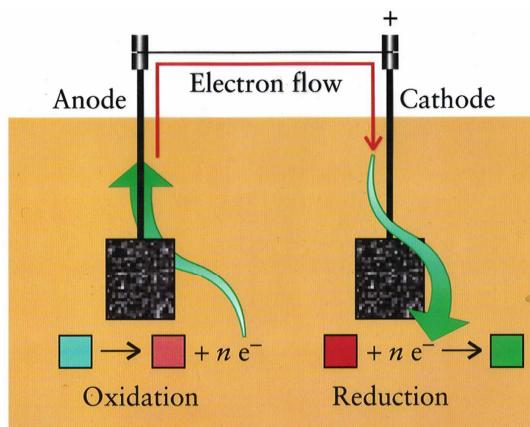
# Galvanic cell movie.

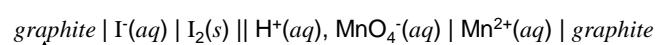


58



## Electron flow in a Galvanic Cell.

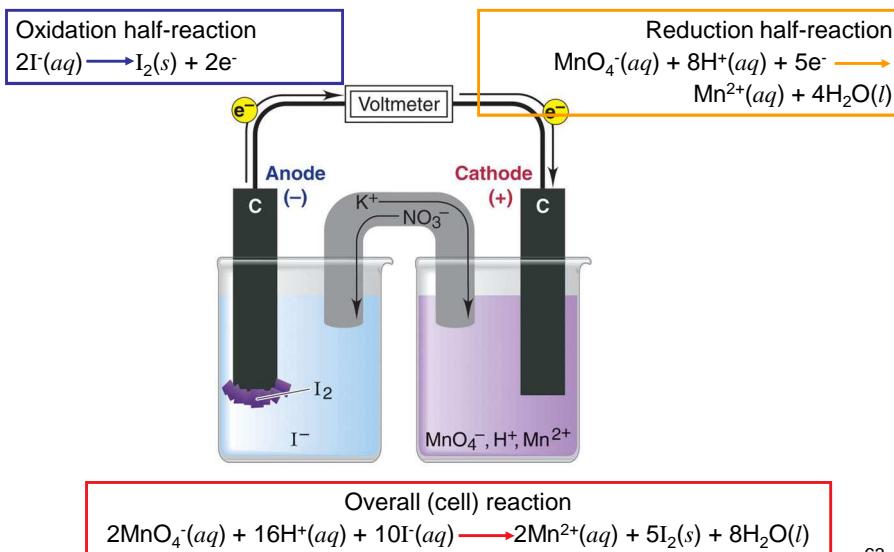




Figure 18.9  
Loretta Jones and Peter Atkins, CHEMISTRY: MOLECULES, MATTER, AND CHANGE, Fourth Edition  
Copyright © 2000 by Loretta Jones and Peter Atkins

TI73 61

## Notation for a Voltaic Cell

| components of anode compartment<br>(oxidation half-cell) |  | components of cathode compartment<br>(reduction half-cell) |
|----------------------------------------------------------|--|------------------------------------------------------------|
| phase of lower oxidation state                           |  | phase of higher oxidation state                            |
| phase boundary between half-cells                        |  |                                                            |


Examples:  $Zn(s) | Zn^{2+}(aq) || Cu^{2+}(aq) | Cu(s)$



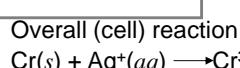
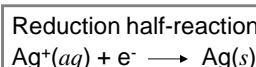
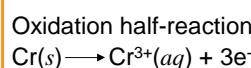
inert electrode

62

Figure 21.6 A voltaic cell using inactive electrodes



63




Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

### Sample Problem 21.2: Diagramming Voltaic Cells

**PROBLEM:** Diagram, show balanced equations, and write the notation for a voltaic cell that consists of one half-cell with a Cr bar in a  $\text{Cr}(\text{NO}_3)_3$  solution, another half-cell with an Ag bar in an  $\text{AgNO}_3$  solution, and a  $\text{KNO}_3$  salt bridge. Measurement indicates that the Cr electrode is negative relative to the Ag electrode.

**PLAN:** Identify the oxidation and reduction reactions and write each half-reaction. Associate the  $(-)(\text{Cr})$  pole with the anode (oxidation) and the  $(+)(\text{Ag})$  pole with the cathode (reduction).

**SOLUTION:**



$\text{Cr}(\text{s}) \mid \text{Cr}^{3+}(\text{aq}) \parallel \text{Ag}^+(\text{aq}) \mid \text{Ag}(\text{s})$  64

### Why Does a Voltaic Cell Work?

The spontaneous reaction occurs as a result of the different abilities of materials (such as metals) to give up their electrons and the ability of the electrons to flow through the circuit.

**$E_{cell} > 0$  for a spontaneous reaction**

**1 Volt (V) = 1 Joule (J)/ Coulomb (C)**



65

**Table 21.1 Voltages of Some Voltaic Cells**

| Voltaic Cell                                  | Voltage (V) |
|-----------------------------------------------|-------------|
| Common alkaline battery                       | 1.5         |
| Lead-acid car battery (6 cells = 12V)         | 2.0         |
| Calculator battery (mercury)                  | 1.3         |
| Electric eel (~5000 cells in 6-ft eel = 750V) | 0.15        |
| Nerve of giant squid (across cell membrane)   | 0.070       |

66

## Standard redox potentials.

- Given a specific redox couple we would like to establish a way by which the reducibility or the oxidizability of the couple can be determined.
- This can be accomplished by devising a number scale, expressed in units of volts of standard electrode potentials  $E^0$ .
- Redox couples exhibiting highly negative  $E^0$  values are readily oxidised.
- Redox couples exhibiting highly positive  $E^0$  values are readily reduced.
- Hence the more positive the  $E^0$  value of a redox couple, the greater the tendency for it to be reduced.
- The electrode potential of a single redox couple  $A/B$  is defined with respect to a standard zero of potential. This reference is called the standard hydrogen reference electrode (SHE).
- $E^0(A,B)$  is called the standard reduction potential for the reduction process  $A + ne^- \rightarrow B$ , and it is defined as the measured cell potential obtained for the Galvanic cell formed by coupling the  $A/B$  electrode system with a hydrogen reference electrode.
- The cell configuration is



$$E^0_{Cell} = E^0_{Cathode} - E^0_{anode}$$

67

## Standard Reduction Potential $E^0$

- $E^0$  (measured in volts V) is for the reaction as written.
- The more positive  $E^0$  the greater the tendency for the substance to be reduced.
- The half-cell reactions are reversible.
- The sign of  $E^0$  changes when the reaction is reversed.
- Changing the stoichiometric coefficients of a half-cell reaction does not change the value of  $E^0$ .

Table 21.2 Selected Standard Electrode Potentials (298K)

| Half-Reaction                                                          | $E^0(V)$ |
|------------------------------------------------------------------------|----------|
| $F_2(g) + 2e^- \rightleftharpoons 2F(aq)$                              | +2.87    |
| $Cl_2(g) + 2e^- \rightleftharpoons 2Cl(aq)$                            | +1.36    |
| $MnO_4(g) + 4H^+(aq) + 2e^- \rightleftharpoons Mn^{2+}(aq) + 2H_2O(l)$ | +1.23    |
| $NO_3^-(aq) + 4H^+(aq) + 3e^- \rightleftharpoons NO(g) + 2H_2O(l)$     | +0.96    |
| $Ag^+(aq) + e^- \rightleftharpoons Ag(s)$                              | +0.80    |
| $Fe^{3+}(g) + e^- \rightleftharpoons Fe^{2+}(aq)$                      | +0.77    |
| $O_2(g) + 2H_2O(l) + 4e^- \rightleftharpoons 4OH^-(aq)$                | +0.40    |
| $Cu^{2+}(aq) + 2e^- \rightleftharpoons Cu(s)$                          | +0.34    |
| $2H^+(aq) + 2e^- \rightleftharpoons H_2(g)$                            | 0.00     |
| $N_2(g) + 5H^+(aq) + 4e^- \rightleftharpoons N_2H_5^+(aq)$             | -0.23    |
| $Fe^{2+}(aq) + 2e^- \rightleftharpoons Fe(s)$                          | -0.44    |
| $2H_2O(l) + 2e^- \rightleftharpoons H_2(g) + 2OH^-(aq)$                | -0.83    |
| $Na^+(aq) + e^- \rightleftharpoons Na(s)$                              | -2.71    |
| $Li^+(aq) + e^- \rightleftharpoons Li(s)$                              | -3.05    |

68  
19.3

Table 20.1 Standard Reduction Potentials in Aqueous Solution at 25 °C\*

| Reduction Half-Reaction                      |                                             | $E^\circ$ (V) |
|----------------------------------------------|---------------------------------------------|---------------|
| $F_2(g) + 2 e^-$                             | $\longrightarrow 2 F^-(aq)$                 | +2.87         |
| $H_2O_2(aq) + 2 H^+(aq) + 2 e^-$             | $\longrightarrow 2 H_2O(l)$                 | +1.77         |
| $PbO(s) + SO_4^{2-}(aq) + 4 H^+(aq) + 2 e^-$ | $\longrightarrow PbSO_4(s) + 2 H_2O(l)$     | +1.685        |
| $MnO_4^-(aq) + 8 H^+(aq) + 5 e^-$            | $\longrightarrow Mn^{2+}(aq) + 4 H_2O(l)$   | +1.51         |
| $Au^{4+}(aq) + 3 e^-$                        | $\longrightarrow Au(s)$                     | +1.50         |
| $Cl_2(g) + 2 e^-$                            | $\longrightarrow 2 Cl^-(aq)$                | +1.36         |
| $Cr_2O_7^{2-}(aq) + 14 H^+(aq) + 6 e^-$      | $\longrightarrow 2 Cr^{3+}(aq) + 7 H_2O(l)$ | +1.33         |
| $O_2(g) + 4 H^+(aq) + 4 e^-$                 | $\longrightarrow 2 H_2O(l)$                 | +1.229        |
| $Br_2(l) + 2 e^-$                            | $\longrightarrow 2 Br^-(aq)$                | +1.08         |
| $NO_3^-(aq) + 4 H^+(aq) + 3 e^-$             | $\longrightarrow NO(g) + 2 H_2O(l)$         | +0.96         |
| $ClO^-(aq) + H_2O(l) + 2 e^-$                | $\longrightarrow Cl^-(aq) + 2 OH^-(aq)$     | +0.89         |
| $Hg^{2+}(aq) + 2 e^-$                        | $\longrightarrow Hg(l)$                     | +0.855        |
| $Ag^+(aq) + e^-$                             | $\longrightarrow Ag(s)$                     | +0.799        |
| $Hg_2^{2+}(aq) + 2 e^-$                      | $\longrightarrow 2 Hg(l)$                   | +0.789        |
| $Fe^{3+}(aq) + e^-$                          | $\longrightarrow Fe^{2+}(aq)$               | +0.771        |
| $I_2(s) + 2 e^-$                             | $\longrightarrow 2 I^-(aq)$                 | +0.535        |
| $O_2(g) + 2 H_2O(l) + 4 e^-$                 | $\longrightarrow 4 OH^-(aq)$                | +0.40         |
| $Cu^{2+}(aq) + 2 e^-$                        | $\longrightarrow Cu(s)$                     | +0.337        |
| $Sn^{4+}(aq) + 2 e^-$                        | $\longrightarrow Sn^{2+}(aq)$               | +0.15         |
| $2 H^+(aq) + 2 e^-$                          | $\longrightarrow H_2(g)$                    | 0.00          |
| $Sn^{2+}(aq) + 2 e^-$                        | $\longrightarrow Sn(s)$                     | -0.14         |
| $Ni^{2+}(aq) + 2 e^-$                        | $\longrightarrow Ni(s)$                     | -0.25         |
| $V^{2+}(aq) + e^-$                           | $\longrightarrow V^{3+}(aq)$                | -0.255        |
| $PbSO_4(s) + 2 e^-$                          | $\longrightarrow Pb(s) + SO_4^{2-}(aq)$     | -0.356        |
| $Cd^{2+}(aq) + 2 e^-$                        | $\longrightarrow Cd(s)$                     | -0.40         |
| $Fe^{2+}(aq) + 2 e^-$                        | $\longrightarrow Fe(s)$                     | -0.44         |
| $Zn^{2+}(aq) + 2 e^-$                        | $\longrightarrow Zn(s)$                     | -0.763        |
| $2 H_2O(l) + 2 e^-$                          | $\longrightarrow H_2(g) + 2 OH^-(aq)$       | -0.8277       |
| $Al^{3+}(aq) + 3 e^-$                        | $\longrightarrow Al(s)$                     | -1.66         |
| $Mg^{2+}(aq) + 2 e^-$                        | $\longrightarrow Mg(s)$                     | -2.37         |
| $Na^+(aq) + e^-$                             | $\longrightarrow Na(s)$                     | -2.714        |
| $K^+(aq) + e^-$                              | $\longrightarrow K(s)$                      | -2.925        |
| $Li^+(aq) + e^-$                             | $\longrightarrow Li(s)$                     | -3.045        |

\* In volts (V) versus the standard hydrogen electrode.

69

Reduction Potential, V

**Best oxidizing agents**

Reduction Half-Reaction

**Kotz Figure 20.14**

+2.87

+1.36

+0.535

+0.337

0.00

-0.44

-0.763

-1.66

Increasing oxidizing ability

Better oxidizing agents than  $H^+(aq)$

$F_2(g) + 2 e^- \longrightarrow 2 F^-(g)$

$Cl_2(g) + 2 e^- \longrightarrow 2 Cl^-(aq)$

$I_2(s) + 2 e^- \longrightarrow 2 I^-(aq)$

$Cu^{2+}(aq) + 2 e^- \longrightarrow Cu(s)$

$2 H^+(aq) + 2 e^- \longrightarrow H_2(g)$

Poorer reducing agents than  $H_2$

Increasing reducing ability

Poorer oxidizing agents than  $H^+(aq)$

$Fe^{2+}(aq) + 2 e^- \longrightarrow Fe(s)$

$Zn^{2+}(aq) + 2 e^- \longrightarrow Zn(s)$

$Al^{3+}(aq) + 3 e^- \longrightarrow Al(s)$

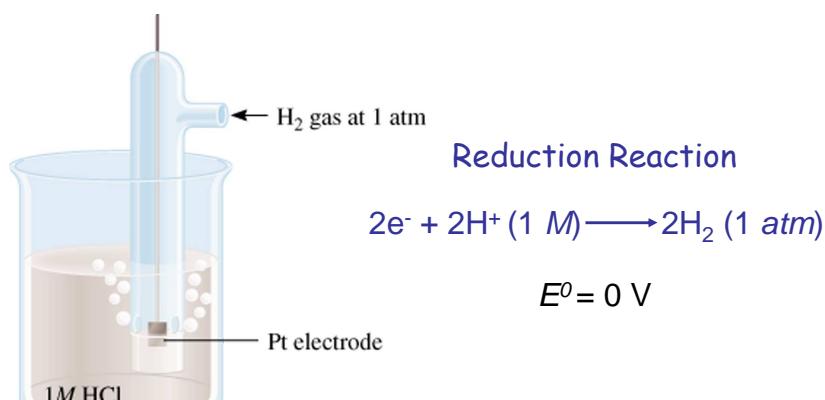
Better reducing agents than  $H_2$

**Best reducing agents**

Potential Ladder for Reduction Half-Reactions

70

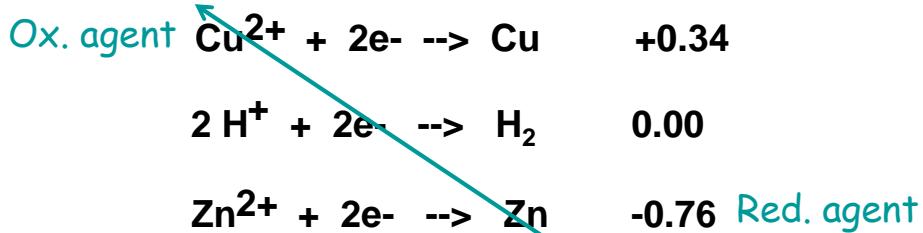
## Standard Redox Potentials, $E^\circ$


| oxidizing ability of ion                             | $E^\circ$ (V) |
|------------------------------------------------------|---------------|
| $\text{Cu}^{2+} + 2\text{e}^- \rightarrow \text{Cu}$ | +0.34         |
| $2\text{H}^+ + 2\text{e}^- \rightarrow \text{H}_2$   | 0.00          |
| $\text{Zn}^{2+} + 2\text{e}^- \rightarrow \text{Zn}$ | -0.76         |
| reducing ability of element                          |               |

- Any substance on the right will reduce any substance higher than it on the left.
- Zn can reduce  $\text{H}^+$  and  $\text{Cu}^{2+}$ .
- $\text{H}_2$  can reduce  $\text{Cu}^{2+}$  but not  $\text{Zn}^{2+}$
- Cu cannot reduce  $\text{H}^+$  or  $\text{Zn}^{2+}$ .

71

## Standard Electrode Potentials

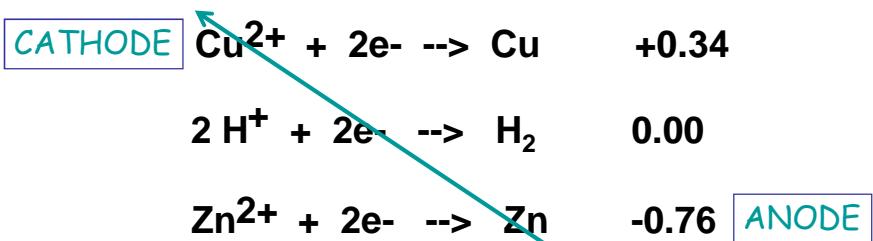

**Standard reduction potential ( $E^\circ$ )** is the voltage associated with a **reduction reaction** at an electrode when all solutes are 1 M and all gases are at 1 atm.



Standard hydrogen electrode (SHE)

72  
19.3

## Standard Redox Potentials, $E^\circ$



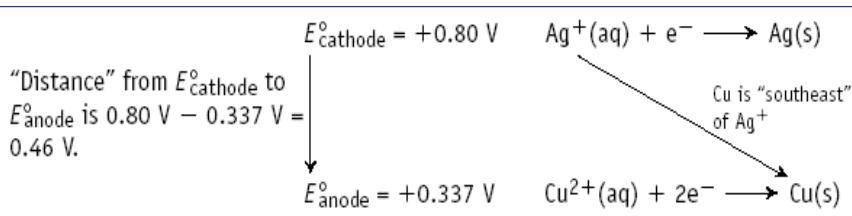

Any substance on the right will reduce any substance higher than it on the left.

**Northwest-southeast rule:** product-favored reactions occur between

- reducing agent at southeast corner
- oxidizing agent at northwest corner

## Standard Redox Potentials, $E^\circ$




**Northwest-southeast rule:**

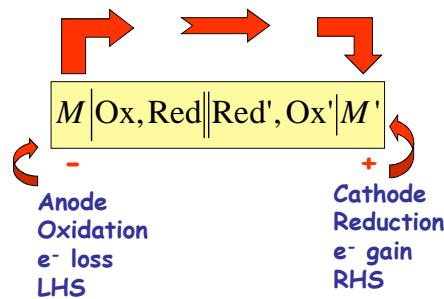
- reducing agent at southeast corner  
= ANODE
- oxidizing agent at northwest corner  
= CATHODE

## Standard Redox Potentials, $E^\circ$

$E^\circ_{\text{net}}$  = "distance" from "top" half-reaction (cathode) to "bottom" half-reaction (anode)

$$E^\circ_{\text{net}} = E^\circ_{\text{cathode}} - E^\circ_{\text{anode}}$$



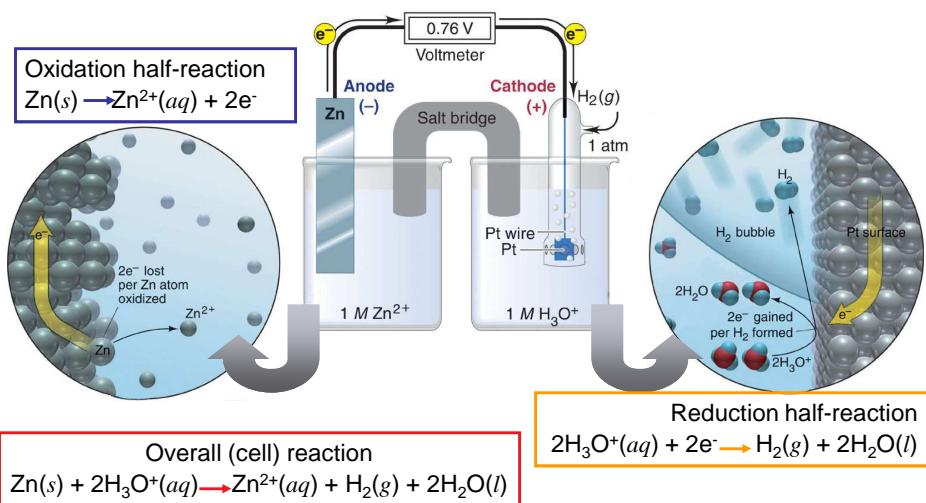

$$E^\circ_{\text{net}} \text{ for Cu/Ag}^+ \text{ reaction} = +0.46 \text{ V}$$

75


## Standard cell potentials.

- The standard potential  $E^\circ_{\text{cell}}$  developed by a Galvanic cell reflects the values of the standard potentials associated with the two component half reactions.
- This can be computed using the following simple procedure.
- The two half reactions are written as reduction processes.
- For any combination of two redox couples to form a Galvanic cell, the half reaction exhibiting the more positive  $E^\circ$  value occurs as a reduction process and is written on the RHS of the cell diagram, as the positive pole of the cell.
- In contrast, the half reaction which has the more negative  $E^\circ$  value is written on the LHS of the cell diagram as the negative pole of the cell, and will occur as an oxidation process.
- The overall cell reaction is given as the sum of the two component redox processes and the net cell potential is given by the expression presented across.

$$E^\circ_{\text{cell}} = E^\circ_{\text{RHS}} - E^\circ_{\text{LHS}} = E^\circ_{\text{cathode}} - E^\circ_{\text{anode}}$$

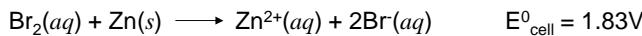



76



77

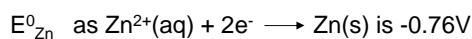
Figure 21.7 Determining an unknown  $E^0_{\text{half-cell}}$  with the standard reference (hydrogen) electrode




78

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

**Sample Problem 21.3: Calculating an Unknown  $E^0_{\text{half-cell}}$  from  $E^0_{\text{cell}}$**

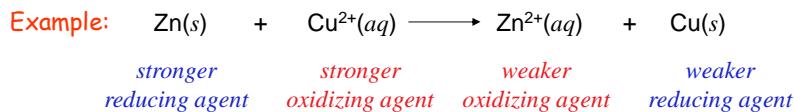

**PROBLEM:** A voltaic cell houses the reaction between aqueous bromine and zinc metal:



Calculate  $E^0_{\text{bromine}}$  given  $E^0_{\text{zinc}} = -0.76\text{V}$

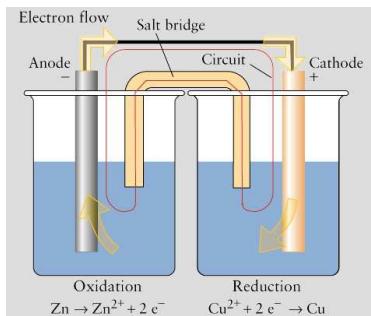
**PLAN:** The reaction is spontaneous as written since the  $E^0_{\text{cell}}$  is (+). Zinc is being oxidized and is the anode. Therefore the  $E^0_{\text{bromine}}$  can be found using  $E^0_{\text{cell}} = E^0_{\text{cathode}} - E^0_{\text{anode}}$ .

**SOLUTION:** anode:  $\text{Zn}(\text{s}) \longrightarrow \text{Zn}^{2+}(\text{aq}) + 2\text{e}^- \quad E = +0.76$




$$E^0_{\text{cell}} = E^0_{\text{cathode}} - E^0_{\text{anode}} = 1.83 = E^0_{\text{bromine}} - (-0.76)$$

$$E^0_{\text{bromine}} = 1.86 - 0.76 = 1.07\text{V}$$


79

- By convention, electrode potentials are written as reductions.
- When pairing two half-cells, you must reverse one reduction half-cell to produce an oxidation half-cell. Reverse the sign of the potential.
- The reduction half-cell potential and the oxidation half-cell potential are added to obtain the  $E^0_{\text{cell}}$ .
- When writing a spontaneous redox reaction, the left side (reactants) must contain the stronger oxidizing and reducing agents.



80

## Relationship between the change in Gibbs energy for the cell reaction and the cell potential.



Transferring 1 electron :

$$W_e = qE_{cell} = -eE_{cell}$$

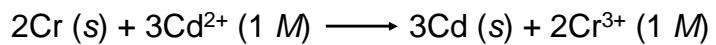
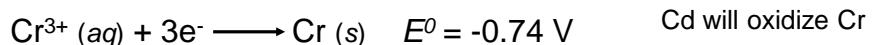
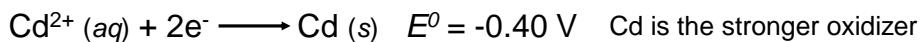
Transferring 1 mole electrons :

$$W_e = -N_A e E_{cell}$$

Transferring  $n$  mole electrons :

$$W_e = -nN_A e E_{cell}$$

Relationship between thermodynamics of cell reaction and observed cell potential.




$$\Delta G = W_e = -neN_A E_{cell} = -nFE_{cell}$$

81

- When a spontaneous reaction takes place in a Galvanic cell, electrons are deposited in one electrode (the site of oxidation or anode) and collected from another (the site of reduction or cathode), and so there is a net flow of current which can be used to perform electrical work  $W_e$ .
- From thermodynamics we note that the maximum electrical work  $W_e$  done at constant temperature and pressure is equal to the change in Gibbs energy  $\Delta G$  for the net cell reaction.
- We apply basic physics to evaluate the electrical work  $W_e$  done in moving  $n$  mole electrons through a potential difference given by  $E_{cell}$ .



What is the standard emf of an electrochemical cell made of a Cd electrode in a 1.0 M Cd(NO<sub>3</sub>)<sub>2</sub> solution and a Cr electrode in a 1.0 M Cr(NO<sub>3</sub>)<sub>3</sub> solution?



$$E_{cell}^0 = E_{cathode}^0 - E_{anode}^0$$

$$E_{cell}^0 = -0.40 - (-0.74)$$

$$E_{cell}^0 = 0.34 \text{ V}$$

82  
19.3

## Thermodynamics of cell reactions.

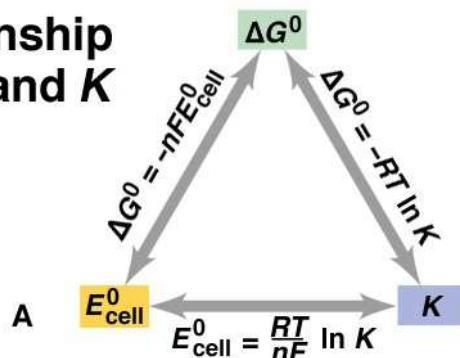
- The change in Gibbs energy for the overall cell reaction is related to the observed net cell potential generated.
- When the standard cell potential  $E_{cell}^0$  is positive, the Gibbs energy  $\Delta G^0$  is negative and vice versa.
- Once  $\Delta G^0$  for a cell reaction is known, then the equilibrium constant  $K$  for the cell reaction can be readily evaluated.
- These expressions are valid for standard conditions :  $T = 298\text{ K}$ ,  $p = 1\text{ atm}$  (or 1 bar);  $c = 1\text{ mol L}^{-1}$ .

$$\Delta G^0 = -nFE_{cell}^0$$

# electrons transferred in cell reaction

$$\Delta G^0 = -RT \ln K$$

$$K = \exp\left[-\frac{\Delta G^0}{RT}\right] = \exp\left[\frac{nFE_{cell}^0}{RT}\right]$$


Gas Constant :  $8.314\text{ J mol}^{-1}\text{ K}^{-1}$

Temperature (K)

83

### Interrelationship of $\Delta G^0$ , $E^0$ , and $K$

A. Any one of these thermodynamic parameters can be used to find the other two.



B. The signs of  $\Delta G^0$  and  $E_{cell}^0$  determine the reaction direction at standard-state conditions.

| $\Delta G^0$ | $K$   | $E_{cell}^0$ | Reaction at standard-state conditions |
|--------------|-------|--------------|---------------------------------------|
| $< 0$        | $> 1$ | $> 0$        | Spontaneous                           |
| 0            | 1     | 0            | At equilibrium                        |
| $> 0$        | $< 1$ | $< 0$        | Nonspontaneous                        |

84

### Sample Problem 21.5: Calculating K and $\Delta G^0$ from $E^0_{\text{cell}}$

**PROBLEM:** Lead can displace silver from solution:



As a consequence, silver is a valuable by-product in the industrial extraction of lead from its ore. Calculate K and  $\Delta G^0$  at 25°C for this reaction.

**PLAN:** Break the reaction into half-reactions, find the  $E^0$  for each half-reaction and then the  $E^0_{\text{cell}}$ .

$$\begin{array}{lll} \text{SOLUTION:} & \text{Pb}^{2+}(aq) + 2e^- \longrightarrow \text{Pb}(s) & E^0 = -0.13\text{V} \\ & \text{Ag}^+(aq) + e^- \longrightarrow \text{Ag}(s) & E^0 = 0.80\text{V} \\ & 2X \left[ \begin{array}{l} \text{Pb}(s) \longrightarrow \text{Pb}^{2+}(aq) + 2e^- \\ \text{Ag}^+(aq) + e^- \longrightarrow \text{Ag}(s) \end{array} \right] & E^0_{\text{cell}} = 0.93\text{V} \\ & E^0_{\text{cell}} = \frac{0.592\text{V}}{n} \log K & \Delta G^0 = -nFE^0_{\text{cell}} = -(2)(96.5\text{kJ/mol} \cdot \text{V})(0.93\text{V}) \\ & \log K = \frac{n \times E^0_{\text{cell}}}{0.592\text{V}} = \frac{(2)(0.93\text{V})}{0.592\text{V}} & K = 2.6 \times 10^{31} \quad \Delta G^0 = -1.8 \times 10^2\text{kJ} \end{array}$$

85

## The Nernst equation.

The potential developed by a Galvanic cell depends on the composition of the cell.

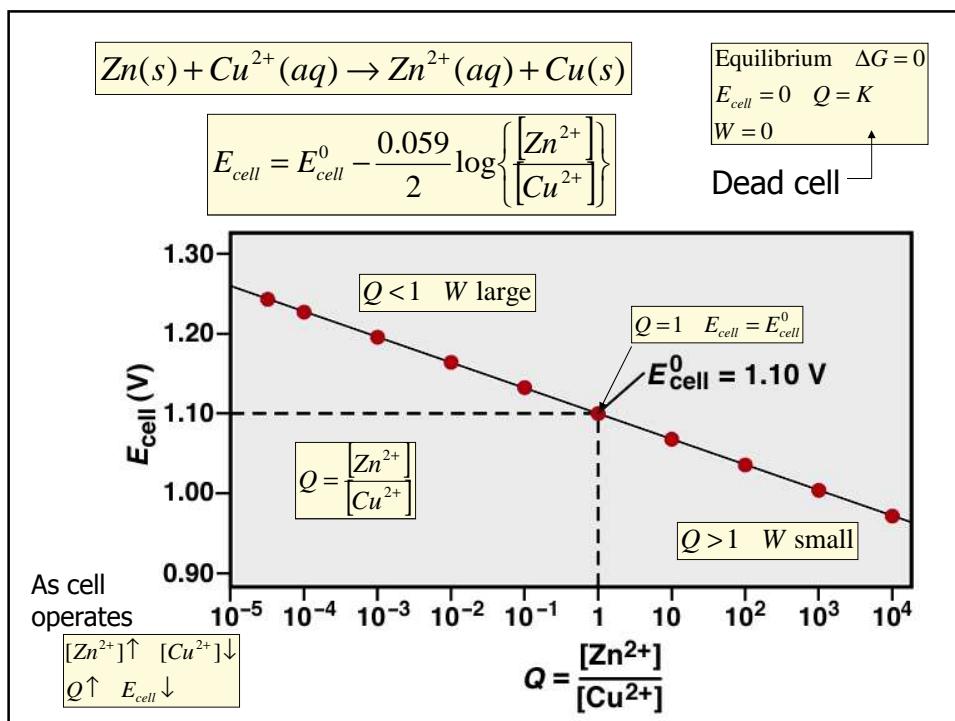
From thermodynamics the Gibbs energy change for a chemical reaction  $\Delta G$  varies with composition of the reaction mixture in a well defined manner.

We use the relationship between  $\Delta G$  and  $E$  to obtain the Nernst equation.

Nernst eqn.holds for single redox couples and net cell reactions.

$$\Delta G = \Delta G^0 + RT \ln Q$$

$$\begin{aligned} \Delta G &= -nFE \quad \Delta G^0 = -nFE^0 \\ -nFE &= -nFE^0 + RT \ln Q \end{aligned}$$


$$E = E^0 - \frac{RT}{nF} \ln Q$$

T = 298K

$$E = E^0 - \frac{0.0592}{n} \log Q$$

↑  
Reaction quotient  
↓

$$Q \equiv \frac{[\text{products}]}{[\text{reactants}]}$$



### Sample Problem 21.6: Using the Nernst Equation to Calculate $E_{cell}$

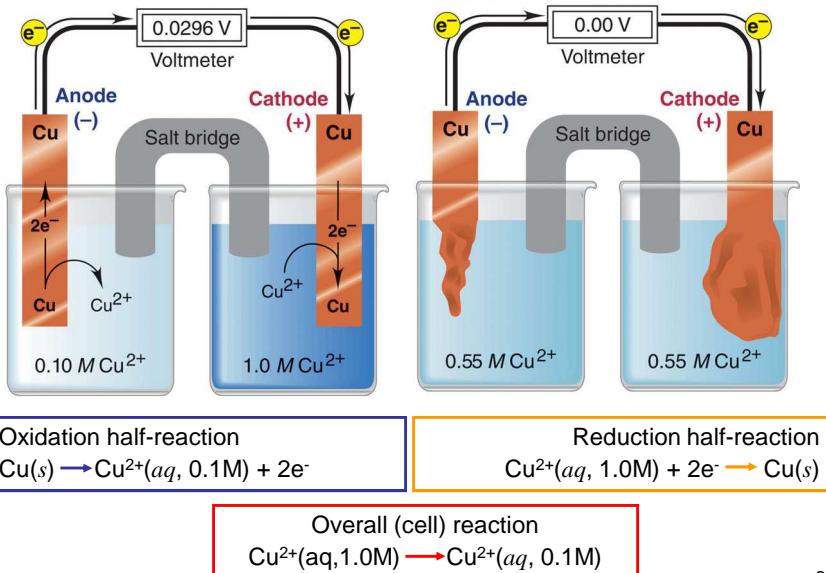
**PROBLEM:** In a test of a new reference electrode, a chemist constructs a voltaic cell consisting of a Zn/Zn<sup>2+</sup> half-cell and an H<sub>2</sub>/H<sup>+</sup> half-cell under the following conditions:

$$[Zn^{2+}] = 0.010 \text{ M} \quad [H^+] = 2.5 \text{ M} \quad P_{H_2} = 0.30 \text{ atm}$$

Calculate  $E_{cell}$  at 25°C.

**PLAN:** Find  $E_{cell}^0$  and Q in order to use the Nernst equation.

**SOLUTION:** Determining  $E_{cell}^0$ :


$$2H^{+}(aq) + 2e^- \longrightarrow H_2(g) \quad E^0 = 0.00 \text{ V} \quad Q = \frac{P_{H_2} \times [Zn^{2+}]}{[H^+]^2}$$

$$Zn^{2+}(aq) + 2e^- \longrightarrow Zn(s) \quad E^0 = -0.76 \text{ V} \quad Q = \frac{(0.30)(0.010)}{(2.5)^2}$$

$$E_{cell} = E_{cell}^0 - \frac{0.0592 \text{ V}}{n} \log Q \quad Q = 4.8 \times 10^{-4}$$

$$E_{cell} = 0.76 - (0.0592/2) \log(4.8 \times 10^{-4}) = 0.86 \text{ V}$$

Figure 21.11 A concentration cell based on the Cu/Cu<sup>2+</sup> half-reaction



89

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

**Sample Problem 21.7: Calculating the Potential of a Concentration Cell**

**PROBLEM:** A concentration cell consists of two Ag/Ag<sup>+</sup> half-cells. In half-cell A, electrode A dips into 0.0100M AgNO<sub>3</sub>; in half-cell B, electrode B dips into 4.0×10<sup>-4</sup>M AgNO<sub>3</sub>. What is the cell potential at 298K? Which electrode has a positive charge?

**PLAN:** E<sup>0</sup><sub>cell</sub> will be zero since the half-cell potentials are equal. E<sub>cell</sub> is calculated from the Nernst equation with half-cell A (higher [Ag<sup>+</sup>]) having Ag<sup>+</sup> being reduced and plating out, and in half-cell B Ag(s) will be oxidized to Ag<sup>+</sup>.

**SOLUTION:** Ag<sup>+</sup>(aq, 0.010M) half-cell A → Ag<sup>+</sup>(aq, 4.0×10<sup>-4</sup>M) half-cell B

$$E_{\text{cell}} = E^0_{\text{cell}} - \frac{0.0592\text{V}}{1} \log \frac{[\text{Ag}^+]_{\text{dilute}}}{[\text{Ag}^+]_{\text{concentrated}}}$$

$$E_{\text{cell}} = 0\text{ V} - 0.0592 \log 4.0 \times 10^{-2} = 0.0828\text{V}$$

Half-cell A is the cathode and has the positive electrode.

90

## Determination of thermodynamic parameters from $E_{cell}$ vs temperature data.

Measurement of the zero current cell potential  $E$  as a function of temperature  $T$  enables thermodynamic quantities such as the reaction enthalpy  $\Delta H$  and reaction entropy  $\Delta S$  to be evaluated for a cell reaction.

$$E = a + b(T - T_0) + c(T - T_0)^2 + \dots$$

$a, b$  and  $c$  etc are constants, which can be positive or negative.  
 $T_0$  is a reference temperature (298K)

$$\left(\frac{\partial E}{\partial T}\right)_P$$

Temperature coefficient of zero current cell potential obtained from experimental  $E=E(T)$  data. Typical values lie in range  $10^{-4} - 10^{-5} \text{ VK}^{-1}$

91

Gibbs-Helmholtz eqn.

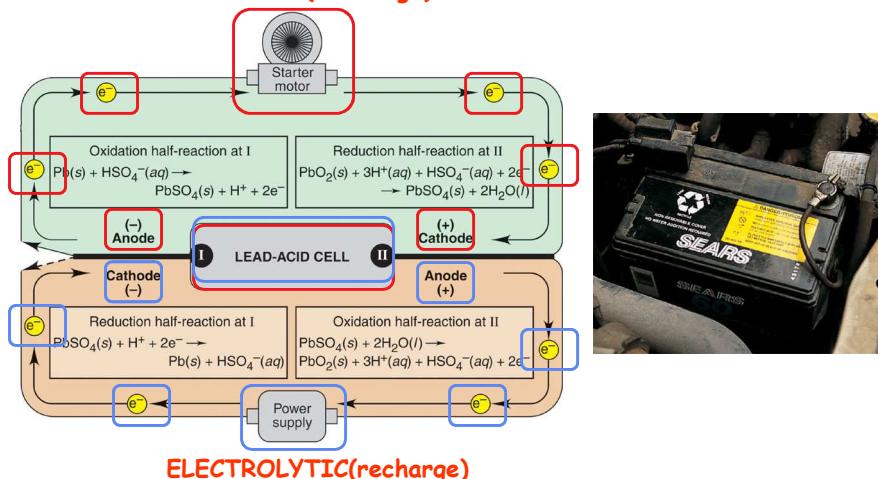
$$\Delta H = \Delta G - T \left( \frac{\partial \Delta G}{\partial T} \right)_P$$

$$\Delta G = -nFE$$

$$\begin{aligned} \Delta H &= -nFE - T \left\{ \frac{\partial}{\partial T} (-nFE) \right\} \\ &= -nFE + nFT \left( \frac{\partial E}{\partial T} \right)_P \\ \Delta H &= -nF \left\{ E - T \left( \frac{\partial E}{\partial T} \right)_P \right\} \end{aligned}$$

- Once  $\Delta H$  and  $\Delta G$  are known then  $\Delta S$  may be evaluated.

$$\begin{aligned} \Delta G &= \Delta H - T\Delta S \\ \Delta S &= \frac{\Delta H - \Delta G}{T} \\ \Delta S &= \frac{1}{T} \left\{ -nFE + nFT \left( \frac{\partial E}{\partial T} \right)_P + nFE \right\} \\ \Delta S &= nF \left( \frac{\partial E}{\partial T} \right)_P \end{aligned}$$

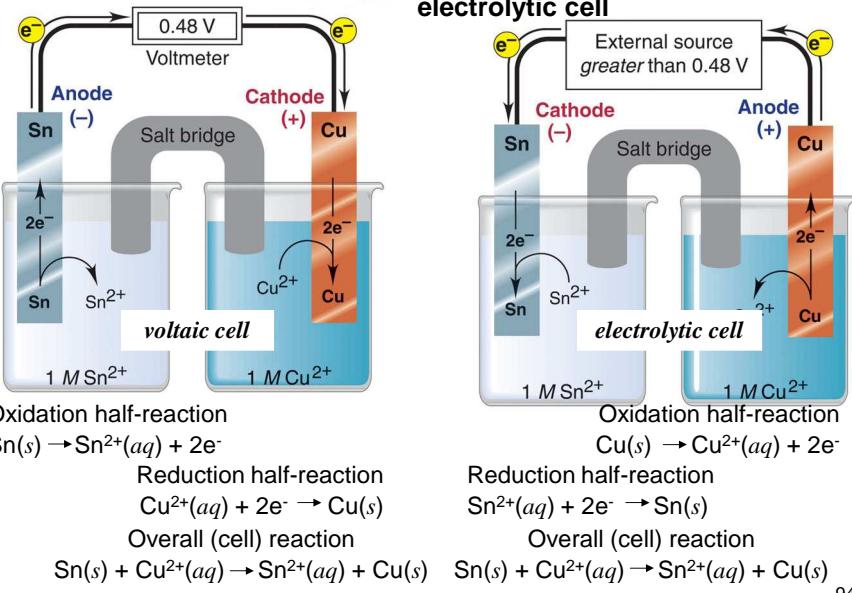

- Electrochemical measurements of cell potential conducted under conditions of zero current flow as a function of temperature provide a sophisticated method of determining useful thermodynamic quantities.

92

Figure 21.18

**The processes occurring during the discharge and recharge of a lead-acid battery**

**VOLTAIC(discharge)**




93

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 21.17

**The tin-copper reaction as the basis of a voltaic and an electrolytic cell**



94

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.