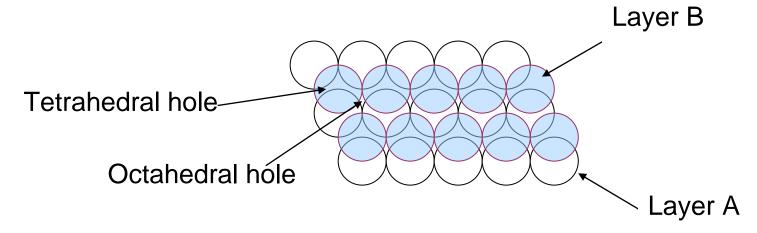
Basic Chemistry Tutorial: Properties of Solutions

Shane Plunkett plunkes@tcd.ie

- Solids
 - Structure of solids
- Liquids
 - Vapour pressure
- Solutions
 - Solubility of gases in liquids
 - Henrys law, Le Chatelier's principle
 - Solubility of liquids in liquids
 - Vapour pressure of solutions
 - Colligative properties

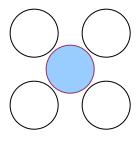
Solids

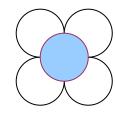
Structure of crystalline solids


- Very long-range ordering. Repeating pattern throughout the crystal called lattice
- Unit cell: smallest part of crystal that, if repeated, makes up the crystal itself
- Coordination number: number of nearest neighbours surrounding an atom in a crystal lattice
- Close packing: efficient way of arranging atoms.

These can be

- 1. Cubic close packed/Face centred cubic
 - ABCABC... pattern
 - Packing density = 74%
 - Each atom in a layer is surrounded by 6 in the plane; 3 above the plane, and 3 below ⇒ coordination no is 12
- 2. Hexagonal close packed
 - ABAB... pattern
 - Packing density = 74%
 - Coordination number = 12

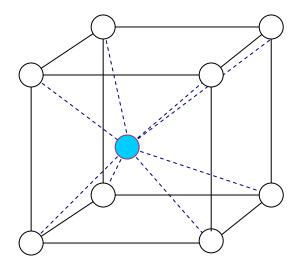

- tetrahedral and octahedral holes



- when layer B is placed so that the atoms fit into the depressions in A, get tetrahedral holes (4 nearest neighbours) and octahedral holes (6 nearest neighbours

Body centred cubic

- less effective use of space
- packing fraction = 68%
- coordination number = 8


Calculating the number of atoms in a unit cell

Step 1: Any atoms whose nucleus is inside the unit cell counts as 1

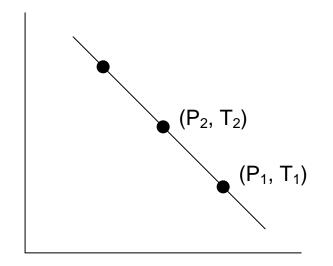
Step 2: Any atoms with a nucleus lying on a face counts as ½

Step 3: Atoms with nuclei on edges count as 1/n, where n cells share

Example, CsCl

1 Cs atom in centre8 surrounding Cl atoms

Each CI at each cell corner is shared between 8 unit cells


$$\Rightarrow$$
 total no of atoms per cell = 1 + 0 + 8 × 1/8

$$= 1 + 1$$

= 2 (one Cs atom and one Cl atom)

Phase Changes

- Transformed from one phase to another (e.g. from solid to liquid to gas)
- Liquid molecules not in fixed lattice, like crystalline solids. They can be vaporised to a gas, usually by an increase in temperature
- When equilibrium between vaporisation of liquid molecules and condensation of gas molecules exists, it is called the equilibrium vapour pressure of the liquid.
- If *ln*(vapour pressure) is plotted against 1/T (K⁻¹), get straight line:

$$ln P_{2} - ln P_{1} = -\Delta H_{vap}/R (1/T_{1} - 1/T_{2})$$

$$ln \underline{P_{2}} = -\Delta H_{vap}(1/T_{1} - 1/T_{2})$$

$$P_{1} R$$

$$(P_{1}, T_{1})$$

Clausius-Clayperon equation

- Can measure how vapour pressure varies with temperature
- At lower pressure, liquid will boil more readily

If the process is a closed system at constant pressure:

$$\Delta G = 0$$
 $\Delta G_{\text{vap}} = \Delta H_{\text{vap}} - T \Delta S_{\text{vap}}$
 $\Delta S_{\text{vap}} = \underline{\Delta H}_{\text{vap}}$
 T

Solutions

- Solvent is the material present in largest amount
- Solute is dissolved in solvent. Can be solid, liquid, or gas.
- "Like dissolves like" rule: polar substances dissolve polar substances, non-polar substances dissolve non-polar substances

Gases in liquids

- Solubility decreases with temperature increase because liquid molecules have higher average kinetic energy and can enter gas phase
- Solubility increases with increasing pressure Henry's Law: "solubility_(gas) proportional to partial pressure of gas over liquid"
- As pressure is increase, greater number of collisions of gas molecules with liquid surface. Leads to increase in solubility
- these changes follow Le Chateliers Principle: "If a system at equilibrium is disturbed, the system will undergo a change to reduce the effect of the disturbance"

Solids in liquids

- saturated solution: maximum amount of dissolved solute at a given temperature in the presence of undissolved solute
- when solid solute is placed in solvent:

- solute molecules separate $\Delta H_{\text{solute}} > 0$

- solvent molecules separate $\Delta H_{solvent} > 0$

- solute and solvent molecules mix $\Delta H_{mix} < 0$

- therefore, ∆H_{solution} generally positive

- solubility depends on temperature. Most solids more soluble at higher temperature

Colligative Properties

- collective properties that depend on the concentration of solute particles present in a solution
- Molality: number of moles of solute dissolved in 1 kg of solvent (units: mol kg⁻¹)

1. Vapour Pressure Depression

- if a nonvolatile solute is added to a pure solvent, the vapour pressure is decreased, i.e. get a vapour pressure depression
- can measure mole fraction and hence molecular weight of solute from Raoults law

$$P_{\text{solvent}} = x_{\text{solvent}} P_{\text{solvent}}^{\circ}$$

where P_{solvent} is the vapour pressure of the solvent

x_{solvent} is the mole fraction of the solvent

P°_{solvent} is the vapour pressure of the pure solvent

$$x_{solvent} + x_{solute} = 1$$
 $\Rightarrow x_{solvent} = 1 - x_{solute}$

$$\Rightarrow P_{solvent} = (1 - x_{solute})P^{\circ}_{solvent}$$

$$\Rightarrow P_{solvent} = P^{\circ}_{solvent} - x_{solute}P^{\circ}_{solvent}$$

$$\Rightarrow P^{\circ}_{solvent} - P_{solvent} = x_{solute}P_{solvent}$$

ΔP, Vapour pressure depression

If the vapour pressure of water at 25°C is 23.76 torr, calculate the vapour pressure of a solution of 50.0g of glucose, C₆H₁₂O₆, in 600g of water at 25°C.

Step 1: Calculate the number of moles of solute and solvent

1 mol
$$C_6H_{12}O_6 = 180.16g$$
 $\Rightarrow 50g = 0.278$ mol glucose
1 mol $H_2O = 18.016$ g $\Rightarrow 600g = 33.3$ mol H_2O

Step 2: Calculate the mole fraction of solute

$$x_{glucose} = \frac{0.278 \text{ mol}}{(0.278 + 33.3)\text{mol}} = 0.008$$

$$\Delta P = x_{solute} P_{solvent}$$

$$= (0.008)(23.76 \text{ torr})$$

$$= 0.197 \text{ torr}$$

Vapour pressure of solution = (23.76 - 0.197 torr) = 23.56 torr

Calculate the vapour pressure depression of a solution of 40.0g of sucrose ($C_{12}H_{22}O_{11}$) in 450g of water at 25°C. The vapour pressure of water at 25°C is 23.76 torr.

Answer: 0.1 torr

Calculate the vapour pressure depression of 56g of glycerol (C₃H₈O₃) in 450g of water at 25°C.

Answer: 0.56 torr

2. Boiling Point Elevation

- A solution typically boils at higher temperature than the pure solvent
- Proportional to concentration of solute molecules

$$\Delta T_b = k_b M_b$$

where k_b is the ebullioscopic constant (°C/m) M_b is the molality

$$\Delta T_b = T_b \text{ solution} - T_b \text{ solvent}$$
 $T_b \text{ solution} = \Delta T_b + T_b \text{ solvent}$

Example

What is the boiling point of 0.5 m lactose in water? K_b for water is 0.512 ${}^{\circ}C/m$.

$$\Delta T_b = k_b M_b$$

$$= (0.512 \, ^{\circ}\text{C/m})(0.5m)$$

$$= 0.26 \, ^{\circ}\text{C}$$

$$T_{b \text{ solution}} = \Delta T_b + T_{b \text{ solvent}}$$

$$T_{b \text{ solution}} = 0.26 \, ^{\circ}\text{C} + 100 \, ^{\circ}\text{C}$$

$$T_{b \text{ solution}} = 100.26 \, ^{\circ}\text{C}$$

Question

What is the boiling point of 150g glycerol ($C_3H_8O_3$) in 1 kg of water? K_b for water is $0.512^{\circ}C/m$.

Answer: 100.83 °C

What is the boiling point of 35g of $C_2H_6O_2$ in 250g ethanol? The boiling point of ethanol is 78.5 °C and k_b is 1.22 °C/m.

Answer: 81.25 ℃

3. Freezing Point Depression

- Solution has lower freezing point that solvent
- Given by

$$\Delta T_f = k_f M_f$$

where k_f is the cryoscopic constant

M_f is the molality

$$\Delta T_f = T_{f \text{ solvent}} - T_{f \text{ solution}}$$

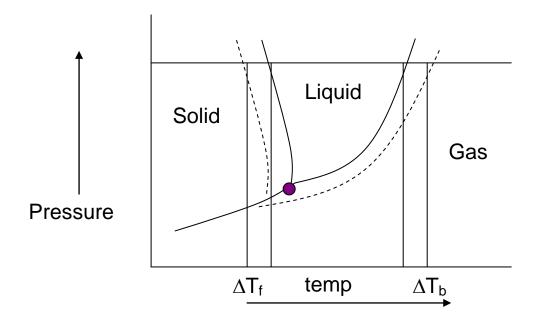
Example

What is the freezing point of 500g of antifreeze ($C_2H_6O_2$) in 2.5 kg of water? (K_f for water is 1.86 °C/m)

No of moles of
$$C_2H_6O_2 = 8.05$$
 mol

Molality =
$$8.05 \text{ mol}$$
 = $3.2 \text{ mol kg}^{-1} = 3.2 m$
2.5 kg

$$\Delta T_f = k_f M_f$$
 $\Delta T_f = (1.86 \, {}^{\circ}\text{C}/m)(3.2m)$ $\Delta T_f = 5.99 \, {}^{\circ}\text{C}$ $T_{f \, solution} = T_{f \, solvent} - \Delta T_f = 0 \, {}^{\circ}\text{C} - 5.99 \, {}^{\circ}\text{C}$ $T_{f \, solution} = -5.99 \, {}^{\circ}\text{C}$


What is the freezing point of 0.11m glucose in water? K_f for water is $1.86 \, {}^{\circ}\text{C}/m$.

Answer: -0.2 °C

What is the freezing point of 0.52m of $C_3H_8O_3$ in water?

Answer: -0.97 °C

The boiling point elevation and freezing point depression may be explained by studying a phase diagram of solvent and solution

Dashed line: solution Solid line: pure solvent Filled circle: Triple point

4. Osmotic Pressure, Π

- an applied pressure to prevent the movement of water from solvent to solution
- only considered for aqueous solutions
- Given by

$$\Pi V = n_B RT$$

where Π is the osmotic pressure

V is the volume of solution

n_b is the moles of solute

R is the gas constant

T is the temperature

- can be used to determine the molecular mass of solute

Example

7.5g of PVA is dissolved in 150mL water. At 25°C, the osmotic pressure of the solution is 0.272 atm. What is the molar mass of the polymer sample?

$$\Pi V = n_B RT$$

$$n_b = \underset{molar\ mass}{mass\ in\ g} = \underset{M_r}{7.5\ g}$$

$$molar\ mass \qquad M_r$$

$$\Pi = 0.272\ atm \qquad V = 0.15L \quad T = 298K \quad R = 8.206 \times 10^{-2}\ L\ atm\ K^{-1}\ mol^{-1}$$

$$n_b = \underset{RT}{\Pi V} \quad \Rightarrow \underset{M_r}{7.5g} = \underset{(8.206 \times 10^{-2}\ L\ atm\ K^{-1}\ mol^{-1})}{(8.206 \times 10^{-2}\ L\ atm\ K^{-1}\ mol^{-1})} = 4495.2\ g\ mol^{-1}$$

$$\underset{M_r}{7.5g} = \underset{0.0408}{\underbrace{0.0408}} \quad M_r = \underset{0.0408}{\underbrace{(7.5\ g)(24.45\ mol^{-1})}} = 4495.2\ g\ mol^{-1}$$

If a 0.30 M solution of sucrose at 37°C has the same osmotic pressure as blood, what is the value for Π of blood?

Answer: 7.6 atm