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Kinetic Molecular Theory of
Ideal Gases
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Relationship between the Ideal Gas
Law and the Individual Gas Laws

Last Lecture ....

IDEAL GAS LAW
Pv=nRT or v="AT

fixed fixed fixed
nand T nandP PandT

Boyle's law Charles's law  Avogadro's law
V= Sonstant V=constant xT  V=constant x n

IGL is a purely empirical law - solely the
consequence of experimental
observations

Explains the behavior of gases over a
limited range of conditions.

IGL provides a macroscopic explanation.
Says nothing about the microscopic
behavior of the atoms or molecules that
make up the gas.




Today ...the Kinetic Molecular Theory (KMT) of gases.

KMTG starts with a set of assumptions
about the microscopic behavior of matter
at the atomic level.

KMTG Supposes that the constituent
particles (atoms) of the gas obey the laws
of classical physics.

Accounts for the random behavior of the
particles with statistics, thereby

behavior of gases.

establishing a new branch of physics -
statistical mechanics.
Offers an explanation of the macroscopic

Predicts experimental phenomena that
suggest new experimental work (Maxwell-
Boltzmann Speed Distribution).

Kotz, Section 11.6, pp.532-537
Chemistry3, Section 7.4, pp.316-319
Section 7.5, pp.319-323.

+  Gas sample comeosed of a large number of
molecules (> 1023) in continuous random
motion.

Distance between molecules large
compared with molecular size, i'e. gas is
dilute.

6as molecules represented as point
masses: hence are of very small volume so
volume of an individual gas molecule can
be neglected.

Intermolecular forces (both attractive
and repulsive) are neglected. Molecules do
not influence one another except durin
collisions. Hence the potential energy o
the gas molecules is neglected and we only
consider the kinetic energy (that arising
from molecular motion) of the molecules.
Intermolecular collisions and collisions
with the container walls are assumed to
be elastic.

The dynamic behaviour of gas molecules
may be described in terms of classical
Newtonian mechanics.

The average kinetic energy of the
molecules’is proportional”to the absolute
temperature of the gas. This statement in
fact serves as a defihition of
temperature. At any given femperature
the molecules of all gases have the same
average kinetic energy.

inetic Molecular Theory (KMT) of Ideal Gas
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Air at normal conditions:

~ 2.7x10% molecules in 1 cm3 of air

Size of the molecules ~ (2-3)x10-19m,
Distance between the molecules ~ 3x10-° m
The average speed - 500 m/s

The mean free path - 107 m (0.1 micron)
The number of collisions in 1 second - 5x10°




Random trajectory of
individual gas molecule.

Assembly of ca. 1023 gas molecules
Exhibit distribution of speeds.

Gas pressure derived from KMT analysis.

The pressure of a gas can be explained by KMT

as arising from the force exerted by gas molecules
impacting on the walls of a container (assumed to be
a cube of side length L and hence of Volume L3).

We consider a gas of N molecules each of mass m
contained in cube of volume V = L3.

When gas molecule collides (with speed v,) with wall of
the container perpendicular to x co-ordinate axis and

bounces off in the opposite direction with the same speed

[
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(an elastic collision) then the momentum lost by the particle and

gained by the wall is Ap,

Apx = v, _(_rnvx) = 2rnvx

The particle impacts the wall once every 2L/v, time units.

2
v

At

X

The force F due to the particle can then be computed

as the rate of change of momentum wrt time (Newtons Second

Law).

_Ap_2mv, _mv;

At 2L, L

!

-V




Force acting on the wall from all N molecules can be computed
by summing forces arising from each individual molecule .

m N
F =IZV§;
=

The magnitude of the velocity v of any particle j can also be
calculated from the relevant velocity components v,, v, and v,.

V3= ViV Ve

The total force F acting on all six walls can therefore be
computed by adding the contributions from each direction.

F:Zm{ZN:vfj+ZN:V§J.+ZN:vfj}=2mZN:{vfj+v§j+vzzj}=2mZN:vjz
L j=1 ' j=1 ' j=1 Y L j=1 ' v Y L4

Assuming that a large number of particles are moving randomly then the force on each of
the walls will be approximately the same.

1. md& ,| 1my&,
F==<2—)Vvii==—)>V;

i=L i=L

1 N
The force can also be expressed in terms of the average velocity <V2> =V = NZV.Z
vz?‘mS !
Where v, denotes the rgot megpRALare velocity of the collection of
particles. F=_—""rms
3L

The pressure can be readily determined once the force is known using the definition
P = F/A where A denotes the area of the wall over which the force is exerted.

_F_NmvZ.  Nmv;

rms

A 3AL 3V

The fundamental KMT result for the gas pressure P can then be stated in a number
of equivalent ways involving the gas density p, the amount n and the molar mass M.

P

_fm
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PVZENW,Z,TSIE mrms :lN M Vrzmszl ﬂ Mvrzms:}nMvrzrm
3t 3] 2 [ 3 |N, 3|N, 3

Using the KMT result and the IGEOS we can derive a
Fundamental expression for the root mean square

Velocity v,,s of a gas molecule.
Avogadro Number

= 6 x 1023 mol! .

3 nMVZ,, = nRT

KMT result J—v PV =% varzrTs =%nMVr2ns MV, = 3RT

\/ﬁ

Vims =4/ 77
M




Gas 103 M/kg mol! Vims/Ms?
H, 2.0158 1930

H,O 18.0158 640
N, 28.02 515
0, 32.00 480
Co, 4401 410

Internal energy of an ideal gas

We now derive two important results.
The first is that the gas pressure P is proportional to the average

kinetic energy of the gas molecules.

The second is that the internal energy U of the gas, i.e. the mean
kinetic energy of translation (motion) of the molecules is directly

proportional to the temperature T of the gas.
This serves as the molecular definition of temperature.

_ anfm:m{lwz }
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(E)

o_ NRT _ NRT _ NkjT
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Average kinetic
Energy of gas
molecule
o1
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(E)= 5 Mire

Boltzmann Constant

N
n=—
N4

_ R _8314Jmal* K™
6.02x10%mol *
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nR= Nkg




Maxwell-Boltzmann velocity distribution

Inareal gas sample at a given temperature T, all
molecules do not travel at the same speed. Some
move more rapidly than others.

We can ask : what is the distribution (spread) of
molecular velocities in a gas sample ? In a real
gas the speeds of individual molecules span wide
ranges with constant collisions continually
changing the molecular speeds.

Maxwell and independently Boltzmann analysed
the molecular speed distribution (and hence
energy distribution) in an ideal gas, and derived a

mathematical expression for the speed (or
energy) distribution f(v) and f(E).

James Maxwell
1831-1879

This formula enables one to calculate various
statistically relevant quantities such as the
average velocity (and hence energy) of a gas
sample, the rms velocity, and the most probable
velocity of a molecule in a gas sample at a given
temperature T.

3/2 -
F(v)=47Vv? m exp Y H
27k, T 2K, T i (3
e el | b=
F(E)=2 exp| —— z
®=2 Tr p[ kBT} fua
o o 000 LE0D 2000 2000
| http://en.wikipedia.org/wiki/Maxwell_speed_distribution | Apecd gurie)
Ludwig Boltzmann
| http://en.wikipedia.org/wiki/M |I-Boltzmann_distribution | 1844-1906
Maxwell-Boltzmann velocity
) ) . ) + The velocity distribution curve
Distribution function has a very characteristic shape.
- A small fraction of molecules
32 2 move with very low speeds, a
F — Az VP m _ mv small fraction move with very
(V) =4zv high speeds, and the vast majorit
27k, T 2k, T gh speeds, vast majority
of molecules move at intermediate
- speeds.
m = particle mass (kg) * The bell shaped curve is called a
kg = BOHZ"‘?S“" CO:‘S*GM Low Gaussian curve and the molecular
=138x10 J K- F(v) tem perature speeds in an ideal gas sample are

J

Number of molecules

/
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Gas molecules exhibit

Gaussian distributed.

* The shape of the Gaussian distribution
curve changes as the tfemperature
is raised.

+ The maximum of the curve shifts to
higher speeds with increasing
temperature, and the curve becomes

Intermediate broader as the temperature
temperature increases.

A greater proportion of the
gas molecules have high speeds
at high temperature than at
High low temperature.
tcmpcmmre

a spread or distribution
of speeds.




Maost molecules in a gas move at
speeds around the average value
in the middie of the range

|

o Number of molecules

Some molecules in the
gas move al low speed

Some molecules in the I
gas move al high spead

| Most probable speed
;Mean speed, &

___| Root mean

\1 square (rms)
speed, ¢

= Number of molecules

0 Speed, 5
Values for M, (g) at 273K

most probable speed = 403ms '
mean speed, £ = 454ms’
ms speed, c=493ms "’

(a) (b)
" M (Xe)=131gmal”’ @ T=100K
o 2
2 2
L @
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@ @
F= £
E E
32 3
= =
0 i A 0 g k ;]
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Speed, s/ms’ Speed, s/ms™

" For gases with higher molar mass
the average speed is lower and the
distribution of speeds is less broad

At higher temperalures, a gas
has a higher average speed and

L a broader distribution of speeds

Properties of the
Maxwell-Boltzmann
Speed Distribution.
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Maxwell Boltzmann (MB) Velocity Distribution

Vimax = Vp
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Features to note:

The most probable speed is at the peak of the curve.
The most probable speed increases as the temperature increases.
The distribution broadens as the temperature increases.

Relative mean speed
(speed at which one molecule
approaches another.

l = \/E<V>

v
Vrd




MB Velocity Distribution Curves : Effect of Molar Mass

0.005

0.004

0.003 1

F(v)

0.002

0.001 4

He M =4.0 kg/mol

Ne M =20.18 kg/mol
Ar M =39.95 kg/mol
Xe M =131.29 kg/mol

0.000

2000

Determining useful statistical quantities from MB

Distribution function.
Average velocity of a gas molecule

MB distribution of velocities
enables us to statistically
estimate the spread of
molecular velocities in a gas

+ 00
<v>=j VF(v)dv
0 Derivation of these formulae
32 2 Requires knowledge of Gaussian
F(V) = Az V2 exp — mv Some maths | Integrals.
2 kT 2k T
1 B B
v
| )= [BT _ [BRT
Maxwell-Boltzmann velocity m M 4——  Molar mass
Distribution function |
Mass of

Most probable speed, v, or v, derived from differentiating i iecule
the MB distribution function and setting the result equal to

zero, i.e. V = Vyo, when dF(v)/dv = 0.

2k, T [2RT
A I VR

Root meah square speed

Yet more maths!

vlrms = {IVZF(V)dV} _/JBI:;'I' = 1/3%

Marwell Speed Distibution
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Ve <(V) <Vi Gas 1M/ | vipe/mst | <w/mst | V. /mst vo/ms-t
kg mol!
H, 2.0158 1930 1775 2510 1570
H,0 18.0158 640 594 840 526
N, 28.02 515 476 673 421
0, 32.00 480 446 630 389
CO, 4401 410 380 537 332
2200
2000 - Typical molecular velocities
2e00 | H, Extracted from MB distribution
ol At 300 K for common gases.
- 1400 A
[ (V)= 8keT _ }SRT
> 1000 1 Tm z™M
800 HZO
. N, O
0 LY ? CO, \V =V, = 2kiBT: E
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To vacuum pump

Molor
\‘
Oven
Detector
Chopper with
rotating slit

N

T i
¥l N S
EY i\,
/'f > —> > > > —> > D >V—> & v
N - ' ‘?b
— U
L

——>
2mL
0=
\
Slow
molecules

Fasl
molecules

Average
molecules Detector

Rotating sector method.

Apparatus used to measure gas molecular speed distribution.

Parallel slits allow a narrow
beam of molecules to pass

Oven Beam of
molecules

Chemistry? Box 7.3, pp.322-323. |

Number of molecules with speed, s

Only those molecules with the
correct speed to pass through
both slits reach the detector

Detector

Molecular speed, s
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Further aspects of KMT Ideal Gases. [ Chemistry? pp.323-326

The KMT of ideal gases can be developed further to derive
a number of further very useful results.

1. It is used to develop expressions for the mean free path A (the distance
travelled by a gas molecule before it collides with other gas molecules).

2. The number of molecules hitting a wall per unit area per unit time
can be derived.

3. The rate of effusion of gas molecules through a hole in a wall can be
determined.

4. The number of collisions per unit time (collision frequency) between
two molecules (like or unlike molecules) can also be readily derived.
This type of expression is useful in describing the microscopic theory
of chemical reaction rates involving gas phase molecules
(termed the Simple Collision Theory (SCT)).

5. The transport properties of gases (diffusion, thermal conductivity,
viscosity) can also be described using this model. The KMT proposes
expressions for the diffusion coefficient D, thermal conductivity k and
viscosity coefficient n which can be compared directly with experiment
and so it is possible to subject the KMT to experimental test.

Wall collision flux and effusion

KMT provides expressions for rate at which gas molecules strike an
area (collision flux) and the rate of effusion through a small hole.

Number density = Number of molecules per

# collisiorﬂ unit volume (unit: m-3)

1 n,Ar /8kBT
= — Az- = — —
@ 4“% <\T/> 4 rm

il
Area of surface (m?) | Time taken (s) :’;’:é‘gge molecular

Number of particles striking
surface per unit area per unit time 0]
T

(particle flw) — ZW:A—’ZW—E (vy="v 8k,T  [k,T
4“’ 4\ 7m i 2zm

n=nNa_ P
AdP 8 v kT P =100 kPa (1 b
Ch.21 pp.755-756 P ook Lo
Zy = JoamiT|  Zwn3xiosems:
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This expression for Z,, also describes the rate of effusion f¢ of
molecules through a small hole of area A,

Confirms Grahame's experimental Law of Effusion that states that
the molecular flux is inversely proportional to M2,

PA PAN,

fE:ZWAb:

J2mk,T 2z MRT

Diffusionofa |
Gas Particle - .

energy between molecules.

Effusion - A gas escaping from a

other (or few ) for collisions.

Diffusion - One gas mixing into another
gas, or gases, of which the molecules are
colliding with each other, and exchanging l

container into a vacuum. There are no

e

T
High

Vacuum

pressure
gas

Effusion of an Ideal Gas I

- the process of a gas escaping through a small hole (a <« | )

into a vacuum - the collisionless regime.

=

1
The number of molecules that escape through High Vacuum

a hole of area Ain1sec, N, in terms of At), T. gas

pressure

1] [ _ PAAL
At A At Al " 2m{v)

II
—
<
~
~ >
Il
x
o
&

v) = %m<vx2>:%kBT, w,)

N, = - AN, where Nis the total # of molecules in a system

_AN_PAAt i_NkBTAAt m _ ANAt kLT AN A kBTN— 1N
2m kT V. 2m\ kT 2 \'m At NV m ¢

t
N(t)=N(0)exp(—;), T A kT

AN | m

Depressurizing of a space ship,
V- 50m3, A of a hole in a wall - 10-4 m2

3 —27
=280 | 30710 7Kg g6, 90203530008
10°m? 1.38-10 ZJK x30K
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The Mean Free Path of Molecules

Energy, momentum, mass can be transported due to
random thermal motion of molecules in gases and liquids.

The mean free path A - the average distance traveled
by a molecule btween two successive collisions.

] .. .
Reference : ® “
AdP 8 P L
Ch.21, pp.752-755 e e
Chemistry3 Ch.7, . a® o .
pp.326-330. ®
[ ]
L ]
[ ]
]
] LX) .
% o
a ® 1

To evaluate the mean free path we examine how we describe collisions between molecules
of like size in a gas.

We consider two molecules A and B approaching each other and assume initially that A is
stationary and B is moving. The molecules will collide if the centre of one (B) comes within a
distance of two molecular radii (a diameter) of molecule A. The area of the target for
molecule B to hit molecule A is a circle with an area ¢ = nd2. This area is called the collision
cross section.

Particle
trajectory

Number density
= # molecules N per

: Area c
unit volume V _ n = E /
Vv <V>At Collision tube
The average time interval between ST
# collisions in time At = nyX(Vype) successive collisions V74 <Vr> = &l
=hy.<v> . Af.c - the collision time: bt
mm, m
\/EO' V)P u= —AB
| # collisions per unit time = Z = n,<vwo | Zzﬁ “In, nNa_ P my+m,, 2
keT Vo kT

| Mean free path i = (total distance travelled in time At)/(# collisions in time At) = <v>At/ny<v>cAt | -
Q Average relative

<V> 1 speed
A= 7 - ﬁ More generally all molecules move with
o7 An average speed <v>. v,) 7l 14 1 1 )
MB speed =42 = = =
= % distribution v) (v )/(vIno V20 n V2Po
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Some Numbers: MFP inversely proportional to
gas density, inversely
proportional to gas pressure
and directly proportional

to gas temperature.
1 7T

1
A oc—— ideal gas: - — — o —
oco_m = for an ideal gas PV=Nk,T P=nkT| = |4x n oc

. e 1 V KT 1.38-10 2 JK x 300K
air at norm. conditions: == =

nn N P 10°Pa

~4-10°m®

the intermol. distance d= i/z ~3.10°m

P=105Pa: A ~ 107m - 30 times greater than d

P =102Pa (10*mbar): A ~ 1m (size of a typical vacuum chamber)

. i il ~2.5 .1012 3(1 A _ _
at this P, there are still ~2.5 -102 molecule/cm3 (1) aoc n, 213 . p2/3

The collision time at norm. conditions: t ~ 107m / 500m/s = 2:10-10s

For H, gas in interstellar space, where the density is ~ 1 molecule/ cm3,

A ~ 108 m - ~100 times greater than the Sun-Earth distance (1.5 -10!! m)
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