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Lecture 2-3.

Kinetic Molecular Theory of 
Ideal Gasesdeal Gases

Last Lecture ….

IGL is a purely empirical law - solely the 
consequence of experimental consequence of experimental 
observations
Explains the behavior of gases over a 
limited range of conditions. 
IGL provides a macroscopic explanation. 
Says nothing about the microscopic 
behavior of the atoms or molecules that 
make up the gas. 
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KMTG starts with a set of assumptions 
about the microscopic behavior of matter 
at the atomic level. 
KMTG S s s th t th  stit t 

Today ….the Kinetic Molecular Theory (KMT) of gases.

KMTG Supposes that the constituent 
particles (atoms) of the gas obey the laws 
of classical physics.
Accounts for the random behavior of the 
particles with statistics, thereby 
establishing a new branch of physics -
statistical mechanics.
Offers an explanation of the macroscopic 
behavior of gasesbehavior of gases.
Predicts experimental phenomena that 
suggest new experimental work (Maxwell-
Boltzmann Speed Distribution).

Kotz, Section 11.6, pp.532-537
Chemistry3, Section 7.4, pp.316-319
Section 7.5, pp.319-323.

Kinetic Molecular Theory (KMT) of Ideal Gas
• Gas sample composed of a large number of 

molecules (> 1023) in continuous random 
motion.

• Distance between molecules large 
compared with molecular size, i.e. gas is 
dilute.

• Gas molecules represented as point p p
masses: hence are of very small volume so 
volume of an individual gas molecule can 
be neglected.

• Intermolecular forces (both attractive 
and repulsive) are neglected. Molecules do 
not influence one another except during 
collisions. Hence the potential energy of 
the gas molecules is neglected and we only 
consider the kinetic energy (that arising 
from molecular motion) of the molecules.

• Intermolecular collisions and collisions 
with the container walls are assumed to 
be elastic.

Air at normal conditions:
~ 2.7x1019 molecules in 1 cm3 of airbe elast c.

• The dynamic behaviour of gas molecules 
may be described in terms of classical 
Newtonian mechanics.

• The average kinetic energy of the 
molecules is proportional to the absolute 
temperature of the gas. This statement in 
fact serves as a definition of 
temperature. At any given temperature 
the molecules of all gases have the same 
average kinetic energy.

Size of the molecules ~ (2-3)x10-10m,
Distance between the molecules ~ 3x10-9 m
The average speed - 500 m/s
The mean free path - 10-7 m (0.1 micron)
The number of collisions in 1 second - 5x109
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Random trajectory of
individual gas molecule.

Assembly of ca. 1023 gas molecules
Exhibit distribution of speeds.

Gas pressure derived from KMT analysis.

The pressure of a gas can be explained by KMT
as arising from the force exerted by gas molecules 
impacting on the walls of a container (assumed to be
a cube of side length L and hence of Volume L3).

We consider a gas of N molecules each of mass m

Pressure

g
contained in cube of volume V = L3.
When gas molecule collides (with speed vx) with wall of 
the container perpendicular to x co-ordinate axis and 
bounces off in the opposite direction with the same speed 
(an elastic collision) then the momentum lost by the particle and
gained by the wall is Δpx.
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The particle impacts the wall once every 2L/vx time units.
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The force F due to the particle can then be computed
as the rate of change of momentum wrt time (Newtons Second
Law).
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Force acting on the wall from all N molecules can be computed 
by summing forces arising from each individual molecule j.
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The magnitude of the velocity v of any particle j can also be 
calculated from the relevant velocity components vx, vy, and vz.
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The total force F acting on all six walls can therefore be 
computed by adding the contributions from each direction.
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Assuming that a large number of particles are moving randomly then the force on each of
the walls will be approximately the samethe walls will be approximately the same.
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The force can also be expressed in terms of the average velocity 
v2

rms
Where vrms denotes the root mean square velocity of the collection of 
particles.
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The pressure can be readily determined once the force is known using the definition 
P = F/A where A denotes the area of the wall over which the force is exerted.
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The fundamental KMT result for the gas pressure P can then be stated in a numberf m f g p m
of equivalent ways involving the gas density ρ, the amount n and the molar mass M. 
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Using the KMT result and the IGEOS we can derive a
Fundamental expression for the root mean square
Velocity v of a gas molecule

Avogadro Number 
= 6 x 1023 mol-1
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Velocity vrms of a gas molecule.
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Gas 103 M/kg mol-1 Vrms/ms-1

H2 2.0158 1930

H2O 18.0158 640

N2 28.02 515

O2 32.00 480

CO2 44.01 410

Internal energy of an ideal gas

We now derive two important results. 
The first is that the gas pressure P is proportional to the average 
kinetic energy of the gas molecules. 
The second is that the internal energy U of the gas, i.e. the mean
kinetic energy of translation (motion) of the molecules is directly
proportional to the temperature T of the gas.

Average kinetic
Energy of gas
moleculep p p g

This serves as the molecular definition of temperature.
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Maxwell-Boltzmann velocity distribution

• In a real gas sample at a given temperature T, all 
molecules do not travel at the same speed. Some 
move more rapidly than others.

• We can ask : what is the distribution (spread) of 
molecular velocities in a gas sample ? In a real 
gas the speeds of individual molecules span wide 
ranges with constant collisions continually 
changing the molecular speeds.

• Maxwell and independently Boltzmann analysed 
the molecular speed distribution (and hence 
energy distribution) in an ideal gas, and derived a 
mathematical expression for the speed (or 
energy) distribution f(v) and f(E).

• This formula enables one to calculate various 
statistically relevant quantities such as the 
average velocity (and hence energy) of a gas 
sample, the rms velocity, and the most probable 
velocity of a molecule in a gas sample at a given 
temperature T.

James Maxwell
1831-1879

Ludwig Boltzmann
1844-1906

( )

3/ 2 2
2

3

( ) 4 exp
2 2

( ) 2 exp

B B

BB

m mvF v v
k T k T

E EF E
k Tk T

π
π

π

⎧ ⎫ ⎡ ⎤
= −⎨ ⎬ ⎢ ⎥

⎩ ⎭ ⎣ ⎦
⎡ ⎤

= −⎢ ⎥
⎣ ⎦

http://en.wikipedia.org/wiki/Maxwell_speed_distribution

http://en.wikipedia.org/wiki/Maxwell-Boltzmann_distribution

⎥
⎦

⎤
⎢
⎣

⎡
−

⎭
⎬
⎫

⎩
⎨
⎧

=
Tk

mv
Tk

mvvF
BB 2

exp
2

4)(
22/3

2

π
π

Maxwell-Boltzmann velocity

Distribution function
• The velocity distribution curve

has a very characteristic shape.
• A small fraction of molecules
move with very low speeds, a
small fraction move with very 
high speeds, and the vast majority
of molecules move at intermediate
speeds.

• The bell shaped curve is called am = particle mass (kg)
k  B l  

)(vF
p

Gaussian curve and the molecular
speeds in an ideal gas sample are
Gaussian distributed.

• The shape of the Gaussian distribution 
curve changes as the temperature 
is raised.

• The maximum of the curve shifts to
higher speeds with increasing 
temperature, and the curve becomes
broader as the temperature
increases

kB = Boltzmann constant
= 1.38 x 10-23 J K-1

Gas molecules exhibit
a spread or distribution
of speeds.

v

increases.
• A greater proportion of the

gas molecules have high speeds 
at high temperature than at 
low temperature.
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Properties of the
Maxwell-Boltzmann
Speed Distribution.

A M  39 95 k  l 1

0.0020

0.0025

T = 300 K
T = 400 K
T = 500 K
T = 600 K

Maxwell Boltzmann (MB) Velocity Distribution

vmax = vP

Ar M = 39.95 kg mol-1

vP (300K) = 353.36 ms-1

vrms (300K) = 432.78 ms-1

‹v› (300K) = 398.74 ms-1

F(
v)

0.0005

0.0010

0.0015

T = 700 K
T = 800 K
T = 900 K
T = 1000K

v / ms-1

0 200 400 600 800 1000 1200 1400 1600 1800
0.0000

Features to note:
The most probable speed is at the peak of the curve.
The most probable speed increases as the temperature increases.
The distribution broadens as the temperature increases. vvrel 2=

Relative mean speed
(speed at which one molecule
approaches another.
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MB Velocity Distribution Curves : Effect of Molar Mass

T = 300 K
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Some maths !

MB distribution of velocities
enables us to statistically 
estimate the spread of
molecular velocities in a gas

Determining useful statistical quantities from MB
Distribution function.

Derivation of these formulae
Requires knowledge of Gaussian 
Integrals.
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Most probable speed, vmax or vP derived from differentiating
the MB distribution function and setting the result equal to
zero, i.e. v = vmax when dF(v)/dv = 0.
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Gas 103 M/
kg mol-1

vrms/ms-1 ‹v›/ms-1 Vrel/ms-1 vP/ms-1

H2 2.0158 1930 1775 2510 1570
H2O 18.0158 640 594 840 526
N2 28.02 515 476 673 421
O2 32.00 480 446 630 389

CO 44 01 410 380 537 332

rmsP vvv <<
v rm

s/m
s-1

1000

1200

1400

1600

1800

2000

2200

H2

H O

CO2 44.01 410 380 537 332

Typical molecular velocities
Extracted from MB distribution
At 300 K for common gases.
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Lπνθ 2

θT
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Apparatus used to measure gas molecular speed distribution.
Rotating sector method.

Chemistry3 Box 7.3, pp.322-323.
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Further aspects of KMT Ideal Gases.

The KMT of ideal gases can be developed further to derive 
a number of further very useful results.  

1. It is used to develop expressions for the mean free path λ (the distance
travelled by a gas molecule before it collides with other gas molecules).

2  The number of molecules hitting a wall per unit area per unit time 

Chemistry3 pp.323-326

2. The number of molecules hitting a wall per unit area per unit time 
can be derived.

3. The rate of effusion of gas molecules through a hole in a wall can be
determined.

4. The number of collisions per unit time (collision frequency) between 
two molecules (like or unlike molecules) can also be readily derived. 
This type of expression is useful in describing the microscopic theory 
of chemical reaction rates involving gas phase molecules g g p
(termed the Simple Collision Theory (SCT)).

5. The transport properties of gases (diffusion, thermal conductivity, 
viscosity) can also be described using this model. The KMT proposes 
expressions for the diffusion coefficient D, thermal conductivity κ and
viscosity coefficient η which can be compared directly with experiment
and so it is possible to subject the KMT to experimental test.

81 n A k Tτ

Number density = Number of molecules per
unit volume (unit: m-3)# collisions

Wall collision flux and effusion
KMT provides expressions for rate at which gas molecules strike an
area (collision flux) and the rate of effusion through a small hole.

Gas molecules
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Number of particles striking
surface per unit area per unit time
(particle flux)
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T = 300 K
ZW ~ 3 x 1023 cm-2s-1

AdP 8
Ch.21 pp.755-756
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This expression for ZW also describes the rate of effusion fE of 
molecules through a small hole of area A0.

Confirms Grahame’s experimental Law of Effusion that states that 
the molecular flux  is inversely proportional  to M1/2.
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Diffusion - One gas mixing into another 
gas, or gases, of which the molecules are 

ll d  h h h  d h  colliding with each other, and exchanging 
energy between molecules.

Effusion - A gas escaping from a 
container into a vacuum.  There are no 
other (or few ) for collisions.

Effusion of an Ideal Gas
- the process of a gas escaping through a small hole (a << l ) 
into a vacuum – the collisionless regime.

The number of molecules that escape through
a hole of area A in 1 sec, Nh, in terms of P(t ), T .h

21 1x
h h

m vpP N N
t A t A

Δ
= =

Δ Δ x
h vm

tAPN
2

Δ
=

m
TkvvTkvmv B

xxBxx =≈=⇒ 22 ,
2
1

2
1

Nh = - ΔN, where N is the total # of molecules in a system

m
Tk

V
tAN

Tk
m

m
tA

V
TNk

Tk
m

m
tAPN BB

222
Δ

=
Δ

=
Δ

=Δ− NN
m
Tk

V
A

t
N B

τ
1

2
−=−=

Δ
Δ

mVTkmVTkm BB 222 mVt τ2Δ

Tk
m

A
VtNtN

B

2,exp)0()( =⎟
⎠
⎞

⎜
⎝
⎛−= τ

τ

Depressurizing of a space ship, 
V - 50m3, A of a hole in a wall – 10-4 m2 s3000s3.01010

K30J/K1038.1
kg107.130

m10
m502 26

23

27

24

3

=××≈
×⋅

⋅××
= −

−

−

−τ



13

The Mean Free Path of Molecules
Energy, momentum, mass can be transported due to
random thermal motion of molecules in gases and liquids.

The mean free path λ - the average distance traveled 
by a molecule btween two successive collisions.by a molecule btween two successive collisions.

Reference :
AdP 8
Ch.21, pp.752-755
Chemistry3 Ch.7, 
pp 326-330pp.326 330.

To evaluate the mean free path we examine how we describe collisions between molecules 
of like size in a gas.
We consider two molecules A and B approaching each other and assume initially that A is 
stationary and B is moving. The molecules will collide if the centre of one (B) comes within a 
distance of two molecular radii (a diameter) of molecule A. The area of the target for 
molecule B to hit molecule A is a circle with an area σ = πd2. This area is called the collision 
cross section.
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Some Numbers:

23
26 31 1.38 10 J/K 300KBk TV −⋅ ×   d

for an ideal gas:
B V BPV Nk T P n k T= =
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T
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λ ∝ ∝
1

Vn
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σ
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MFP inversely proportional to 
gas density, inversely 
proportional to gas pressure
and directly proportional 
to gas temperature.
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= = = ≈ ⋅air at norm. conditions:

P = 105 Pa:   λ ~ 10-7 m   - 30 times greater than d

P = 10-2 Pa (10-4mbar):    λ ~ 1 m  (size of a typical vacuum chamber)

at this P  there are still ~2 5 1012 molecule/cm3 (!) 

m 103~ 93 −⋅=
N
Vd

2/3 2/3λ

the intermol. distance

- at this P, there are still ~2.5 ⋅1012 molecule/cm3 (!) 2/3 2/3
Vn P

d
λ − −∝ ∝

The collision time at norm. conditions:  τ ~ 10-7m / 500m/s = 2·10-10 s

For H2 gas in interstellar space, where the density is ~ 1 molecule/ cm3,

λ ~ 1013  m   - ~ 100 times greater than the Sun-Earth distance (1.5 ⋅1011  m) 


