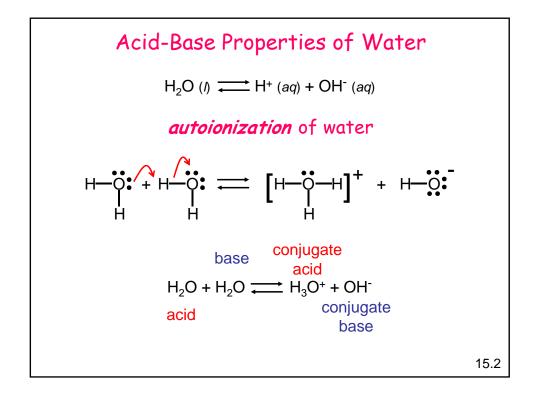
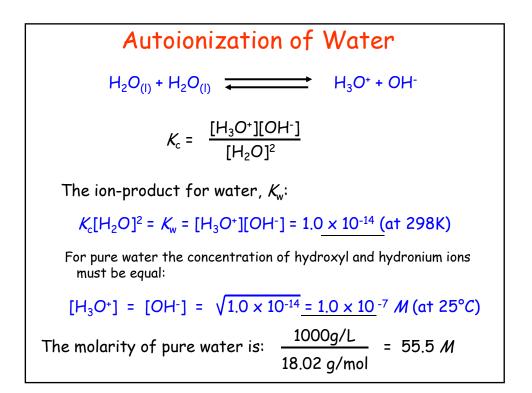
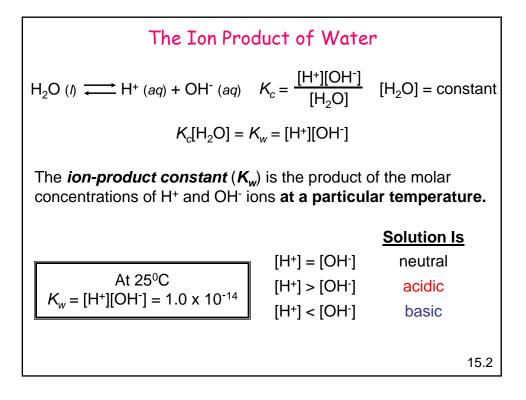
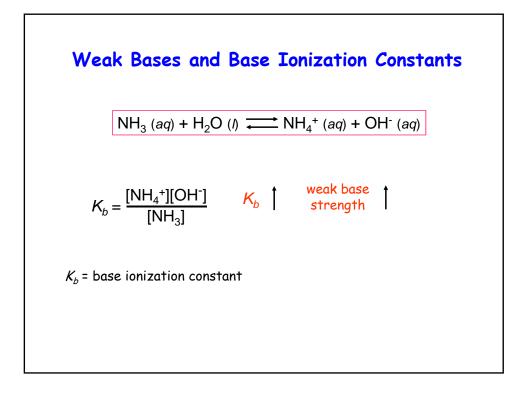
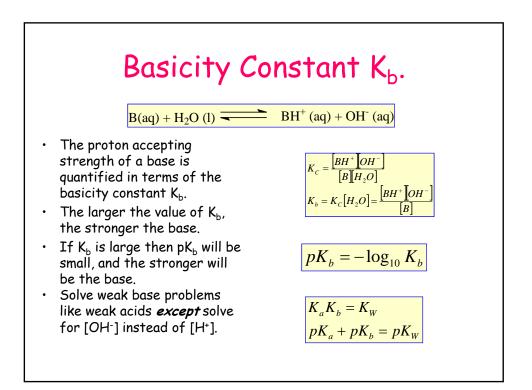

d strengths an	Table 18.2 Ka Values for Son	ne Monoprotic Acids a	nt 25°C
alue. 🔒	Name (Formula)	Lewis Structure*	Ka
	Iodic acid (HIO ₃)	H-Ö-Ï=Ö	1.6×10 ⁻¹
	Chlorous acid (HClO ₂)	н−ё−ё⊨ё	1.12×10 ⁻²
	Nitrous acid (HNO ₂)	H-Ö-N=Ö	7.1×10^{-4}
	Hydrofluoric acid (HF)	н—Ё:	6.8×10 ⁻⁴
	Formic acid (HCOOH)	н—с—ё—н 	1.8×10 ⁻⁴
GTH	Benzoic acid (C ₆ H ₅ COOH)	(©)-с-ё-н	6.3×10 ⁻⁵
TRENG.	Acetic acid (CH ₃ COOH)	н :0: н—с—с—ё—н н	1.8×10 ⁻⁵
ACID S	Propanoic acid (CH ₃ CH ₂ COOH)	н н :0: н-с-с-с-ё-н н н	1.3×10 ⁻⁵
	Hypochlorous acid (HClO)	H—Ö—Ë	2.9×10^{-8}
	Hypobromous acid (HBrO)	H—Ö—Ë:	2.3×10 ⁻⁹
	Hydrocyanic acid (HCN)	H-C=N:	6.2×10 ⁻¹
	Phenol (C ₆ H ₃ OH)	—ё—н	1.0×10 ⁻¹
	Hypoiodous acid (HIO)	н—ö—ï:	2.3×10^{-11}

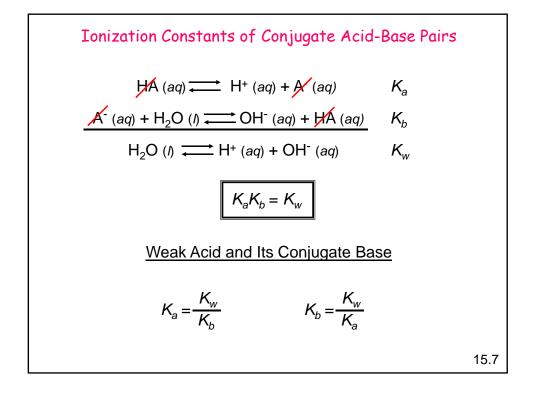

Acid		$K_{\rm a}/{ m moldm^{-3}}$	pK_a		
Hydriodic acid	HI	1×10^{10}	-10	Strongest	
Perchloric acid [chloric(VII) acid]	HCIO ₄	1×10^{10}	-10	acid	
Hydrobromic acid	HBr	1×10^9	-9		Strong
Hydrochloric acid	HCI	1×10^7	-7		acids
Sulfuric acid [sulfuric(VI) acid]	H ₂ SO ₄	1×10^3	-3		
Nitric acid [nitric(V) acid]	HNO ₃	25	-1.4		
Trichloroethanoic acid	CCl ₃ CO ₂ H	2.2×10^{-1}	0.66		
Chlorous acid [chloric(III) acid]	HCIO ₂	1.1×10^{-2}	1.94		
Hydrofluoric acid	HF	6.3×10^{-4}	3.20		
Nitrous acid [nitric(III) acid]	HNO ₂	5.6×10^{-4}	3.25		
Methanoic acid	HCO ₂ H	1.8×10^{-4}	3.75		
Benzoic acid	Benzoic acid $C_6H_5CO_2H$ 6.3×10^{-5} 4.20		Weak		
Ethanoic acid	CH ₃ CO ₂ H	1.7×10^{-5}	4.76		acids
Propanoic acid	CH3CH2CO2H	1.3×10^{-5}	4.87		
Carbonic acid	H ₂ CO ₃	4.5×10^{-7}	6.35		
Hypochlorous acid [chloric(I) acid]	HOCI	4.0×10^{-8}	7.40		
Hydrocyanic acid	HCN	$6.2 imes 10^{-10}$	9.21	Weakest	
Phenol	C ₆ H ₅ OH	1.0×10^{-10}	9,99	acid	

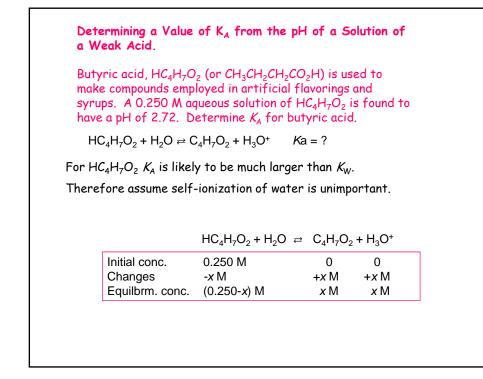

The Relationship Betwee	n K_a and pK_a place	$K_A = -\log_{10}$
Acid Name (Formula)	K _A at 298 K	р <i>К_А</i>
Hydrogen sulfate ion (HSO4 ⁻)	1.02 × 10 ⁻²	1.991
Nitrous acid (HNO ₂)	7.1×10^{-4}	3.15
Acetic acid (CH3COOH)	1.8×10^{-5} pK_A	1.74
Hypobromous acid (HBrO)	2.3 × 10 ⁻⁹	8.64
Phenol (C ₆ H ₅ OH)	1.0 × 10 ⁻¹⁰	10.00



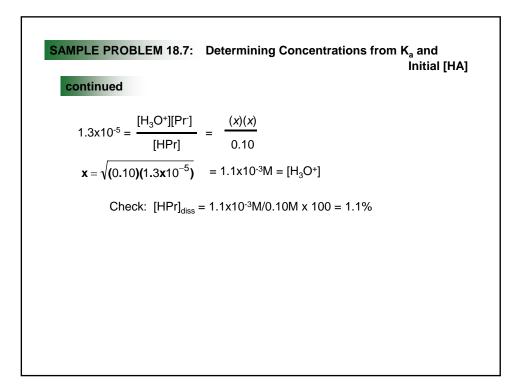


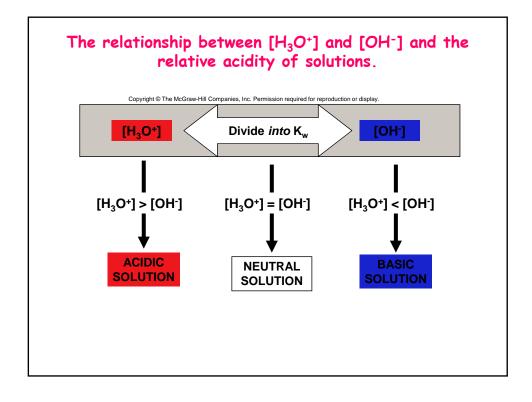


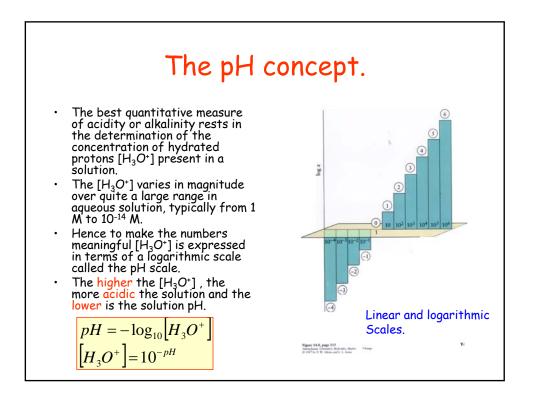


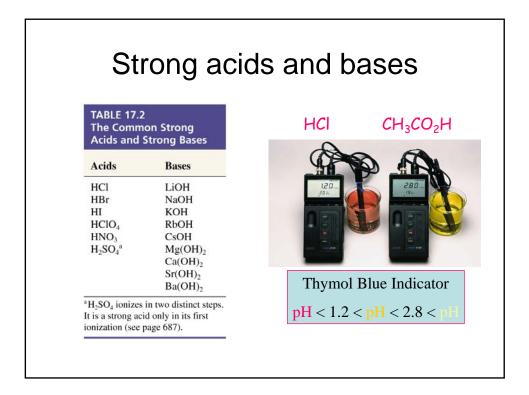

0	273		
	283	1.5×10^{-15} 3.0×10^{-15}	7.41
20	293	6.8×10 ⁻¹⁵	7.08
25	298	1.0 × 10 ⁻¹⁴	7.00
30	303	1.5×10^{-14}	6.91
40		1.5×10^{-14} 3.0×10^{-14}	
	313		6.76
50	323	5.5 × 10 ⁻¹⁴	6.63
50	333	9.5×10^{-14}	6.51

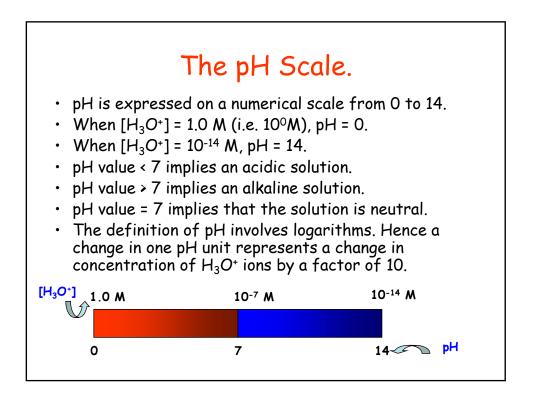
cid and	base dissociati	on co	onst	an
	Ionization Equilibrium	Ionization Constant K	р <i>К</i>	
Acid		$K_{a} =$	pK _a =	
Iodic acid	$HIO_3 + H_2O \implies H_3O^+ + IO_3^-$	1.6×10^{-1}	0.80	
Chlorous acid	$HCIO_2 + H_2O \implies H_3O^+ + CIO_2^-$	1.1×10^{-2}	1.96	
Chloroacetic acid	$HC_2H_2CIO_2 + H_2O \implies H_3O^+ + C_2H_2CIO_2^-$	1.4×10^{-3}	2.85	
Nitrous acid	$HNO_2 + H_2O \implies H_3O^+ + NO_2^-$	7.2×10^{-4}	3.14	
Hydrofluoric acid	$HF + H_2O \implies H_3O^+ + F^-$	6.6×10^{-4}	3.18	gth
Formic acid	$HCHO_2 + H_2O \implies H_3O^+ + CHO_2^-$	1.8×10^{-4}	3.74	ren
Benzoic acid	$HC_7H_5O_2 + H_2O \implies H_3O^+ + C_7H_5O_2^-$	6.3×10^{-5}	4.20	Acid strength
Hydrazoic acid Acetic acid	$HN_3 + H_2O \Longrightarrow H_3O^+ + N_3^-$	1.9×10^{-5} 1.8×10^{-5}	4.72 4.74	Acid
Acetic acid Hypochlorous acid	$\begin{array}{c} HC_2H_3O_2^- + H_2O \rightleftharpoons H_3O^+ + C_2H_3O_2^- \\ HOCI + H_2O \rightleftharpoons H_3O^+ + OCI^- \end{array}$	1.8×10^{-9} 2.9×10^{-8}	4.74	A
Hydrocyanic acid	$HOCI + H_2O \iff H_3O^+ + OCI$ $HCN + H_2O \implies H_3O^+ + CN^-$	6.2×10^{-10}	9.21	
Phenol	$HOC_6H_5 + H_2O \rightleftharpoons H_3O^+ + C_6H_5O^-$	1.0×10^{-10}	10.00	
Hydrogen peroxide	$\begin{array}{c} H_{2}O_{2} + H_{2}O \rightleftharpoons H_{3}O + H_{2}O & \\ H_{3}O^{+} + HO_{2}^{-} \end{array}$	1.8×10^{-12}	11.74	
Base		$K_{\rm b} =$	$pK_b =$	\land
Diethylamine	$(C_2H_5)_2NH + H_2O \implies (C_2H_5)_2NH_2^+ + OH^-$	6.9×10^{-4}	3.16	
Ethylamine	$C_2H_5NH_2 + H_2O \implies C_2H_5NH_3^+ + OH^-$	4.3×10^{-4}	3.37	Base strength
Ammonia	$NH_3 + H_2O \implies NH_4^+ + OH^-$	1.8×10^{-5}	4.74	tre
Hydroxylamine	$HONH_2 + H_2O \implies HONH_3^+ + OH^-$	9.1×10^{-9}	8.04	ses
Pyridine	$C_5H_5N + H_2O \implies C_5H_5NH^+ + OH^-$	1.5×10^{-9}	8.82	Ba
Aniline	$C_6H_5NH_2 + H_2O \implies C_6H_5NH_3^+ + OH^-$	7.4×10^{-10}	9.13	

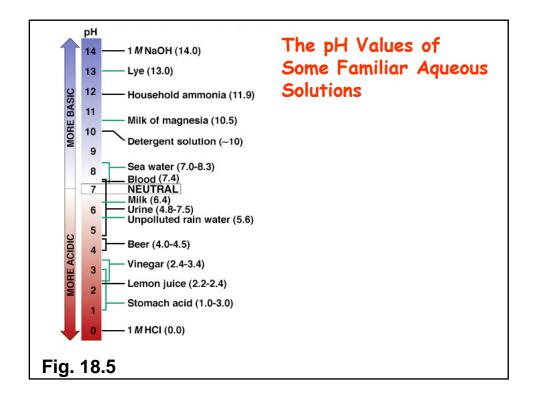

$$Log[H_{3}O^{+}] = -pH = -2.72$$

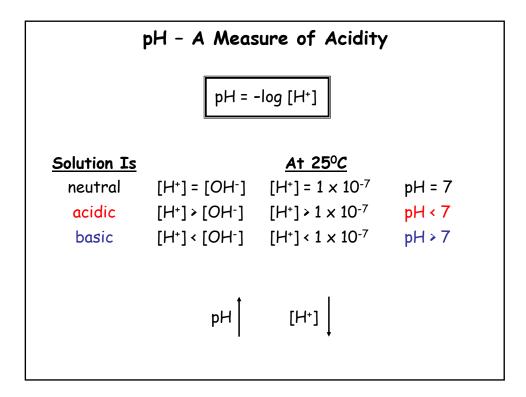

$$[H_{3}O^{+}] = 10^{-2.72} = 1.9x10^{-3} = x$$

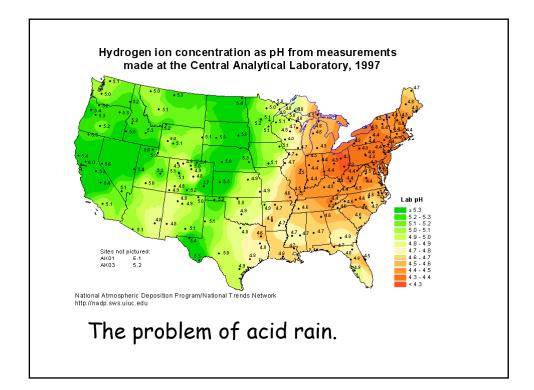

$$K_{a} = \frac{[H_{3}O^{+}] [C_{4}H_{7}O_{2}^{-}]}{[HC_{4}H_{7}O_{2}]} = \frac{1.9x10^{-3} \cdot 1.9x10^{-3}}{(0.250 - 1.9x10^{-3})}$$

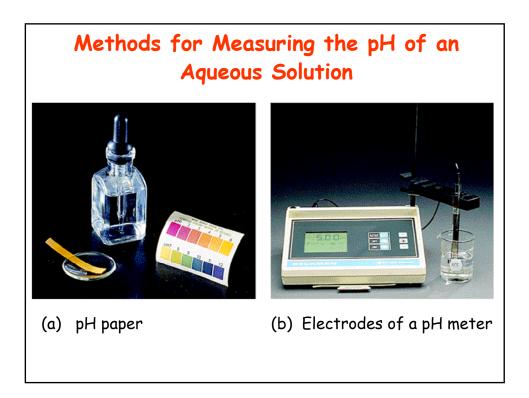

$$K_{a} = 1.5x10^{-5} \qquad Check \ assumption: \ K_{a} >> K_{W}.$$

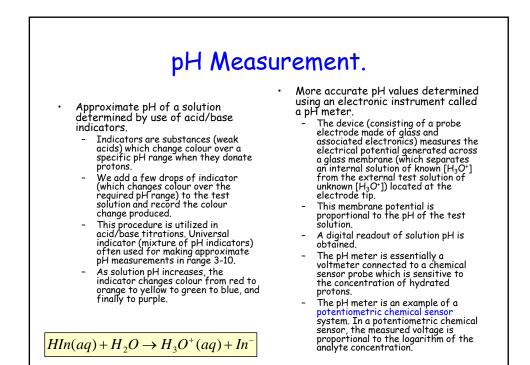

an org	anic acid w	hose salts	OOH, which we s are used to re of 0.10M HPr (K	tard mol	d growth in
		•	on and express n which are ne		
Assumptions: For	· HPr(<i>aq</i>) + I	$H_2O(l)$	⊢ H ₃ O⁺(<i>aq</i>) +	• Pr ⁻ (<i>aq</i>)	
<i>X</i> =	= [HPr] _{diss} =	[H ₃ O ⁺] _{from}	_{HPr} = [Pr ⁻]	K _a =	[H ₃ O+][Pr-]
SOLUTION:					[HPr]
Concentration(M)	HPr(aq) +	H ₂ O(<i>l</i>) -	<u> </u>	+ Pr⁻(<i>aq</i>))
Initial	0.10	-	0	0	
Change	- <i>x</i>	-	+ <i>x</i>	+ <i>x</i>	
Equilibrium	0.10-x	_	x	x	

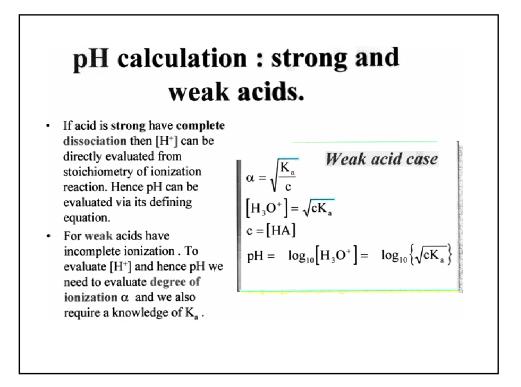


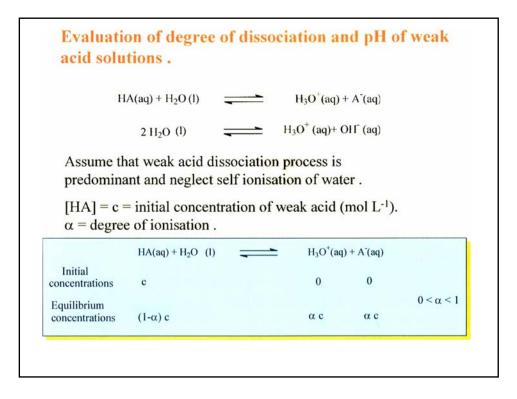







			[H ₃ O ⁺]	pH	[OH-]	рОН
The	$\overline{)}$		1.0 × 10 ⁻¹⁵	15.00	1.0 × 10 ¹	-1.00
Relations	0		1.0 × 10 ⁻¹⁴	14.00	1.0×10^{0}	0.00
Among	MORE BASIC		1.0 × 10 ⁻¹³	13.00	1.0×10^{-1}	1.00
[H ₃ O ⁺],	B	BASIC	1.0 × 10 ⁻¹²	12.00	1.0 × 10 ⁻²	2.00
pH,	Ë		1.0 × 10 ⁻¹¹	11.00	1.0×10^{-3}	3.00
[OH⁻],	M		1.0×10^{-10}	10.00	1.0×10^{-4}	4.00
and pOH			1.0 × 10 ⁻⁹	9.00	1.0×10^{-5}	5.00
and pon			1.0 ×10 ^{−8}	8.00	1.0×10^{-6}	6.00
-		NEUTRA	L 1.0 × 10 ^{−7}	7.00	1.0×10^{-7}	7.00
			1.0 ×10 ^{−6}	6.00	1.0 × 10 ⁻⁸	8.00
	C		1.0×10^{-5}	5.00	1.0×10^{-9}	9.00
$pH = -\log_{10} H_3O^+ $	ā	ACIDIC	1.0×10^{-4}	4.00	1.0×10^{-10}	10.00
$pH = -\log_{10} \left[H_3 O^+ \right]$ $pOH = -\log_{10} \left[OH^- \right]$	MORE ACIDIC		1.0 ×10 ^{−3}	3.00	1.0×10^{-11}	11.00
$pOH = -\log_{10}[OH]$	H		1.0 × 10 ⁻²	2.00	1.0×10^{-12}	12.00
	Q		1.0×10^{-1}	1.00	1.0×10^{-13}	13.00
	-		1.0×10^{0}	0.00	1.0×10^{-14}	14.00
-	7		1.0×10^{1}	-1.00	1.0×10^{-15}	15.00




PROBLEM:	In a restoration project, a conservator prepares copper-plate etching solutions by diluting concentrated HNO ₃ to 2.0M, 0.30M, and 0.0063M HNO ₃ . Calculate [H ₃ O ⁺], pH, [OH ⁻], and pOH of the three solutions at 25 ^o C.
	O_3 is a strong acid so $[H_3O^+] = [HNO_3]$. Use K_w to find the $[OH^-]$ then convert to pH and pOH.
SOLUTION:	For 2.0M HNO ₃ , $[H_3O^+] = 2.0M$ and $-\log [H_3O^+] = -0.30 = pH$ [OH ⁻] = K _w / $[H_3O^+] = 1.0x10^{-14}/2.0 = 5.0x10^{-15}M$; pOH = 14.30
	For 0.3M HNO ₃ , $[H_3O^+] = 0.30M$ and $-\log [H_3O^+] = 0.52 = pH$
	$[OH^{-}] = K_w / [H_3O^+] = 1.0 \times 10^{-14} / 0.30 = 3.3 \times 10^{-14} M; pOH = 13.48$
	For 0.0063M HNO ₃ , [H ₃ O ⁺] = 0.0063M and -log [H ₃ O ⁺] = 2.20 = pH
	$[OH^{-}] = K_w / [H_3O^{+}] = 1.0 \times 10^{-14} / 6.3 \times 10^{-3} = 1.6 \times 10^{-12} M$; pOH = 11.80

