

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath

The University of Dublin

Acids, Bases and pH

Preliminary Course

Steffi Thomas ssthomas@tcd.ie 14/09/2017

Outline

- \triangleright What are acids and bases?
- \triangleright Can we provide a general definition of acid and base?
- \triangleright How can we quantify acidity and basicity?
- \triangleright Can we classify acid and base strength?
- \triangleright pH concept and pH scale.
- \triangleright Acid/base reactions: neutralization
- \triangleright How can we monitor an acid/base reaction in real time?

Acids and Bases: Common examples

Uses of Common Acids and Bases

18.1 Some Common Acids and Bases and Their Household Uses

Acids and Bases

Acids

- 1. Have sharp or sour taste
- 2. React with metals to produce hydrogen gas
- 3. React with (bi)carbonates to produce CO₂ gas
- \triangleright This results in weathering of buildings, etc.

Bases

- 1. Have bitter taste
- 2. React with acids to make salts
- 3. React with oil to make soaps
- \triangleright They feel slippery on your hands

Classical Acid-Base definition

• An **acid** is a neutral substance that contains hydrogen and dissociates or ionizes in water to yield hydrated protons or hydronium ions H3O⁺.

 $HCl \rightarrow H^{+}$ (aq) + Cl⁻ (aq)

• A **base** is a neutral substance that contains the hydroxyl group and dissociates in water to yield hydrated hydroxide ions OH⁻.

 $NaOH \rightarrow Na^{+}(aq) + OH^{-}(aq)$

• Neutralization is the reaction of an H⁺ (H₃O⁺) ion from the acid and the OH⁻ ion from the base to form water, H_2O .

> HCl (aq) + NaOH (aq) \rightarrow NaCl (aq) + H₂O (aq) *acid base salt water*

These definitions although correct are limited in that they are not very general and do not give a comprehensive idea of what acidity and basicity entails.

A note on "hydronium"

The H_3O^+ hydronium ion is often represented simply as "H^{+"}

This is simpler and easier to write, but "H⁺" is simply a proton $-$ and an isolated proton simply cannot exist by itself in solution.

However, " H_3O^{+} " is also a simplification – acidified water is EXTREMELY complicated, with large and dynamic conglomerates of water molecules really stabilising the extra protons.

It's probably best to write " H_3O^{+} ", but don't be confused if you see $^{\prime\prime}$ H^{+} ".

Defining acids and bases

1. Arrhenius (1884)

- Acid: a species that dissolves to give proton concentration
- **Base**: a species that dissolves to give hydroxide concentration

2. Brønsted-Lowry (1923)

- **Acid**: a species that **donates a proton**
- **Base:** a species that accepts a proton

3. Lewis (1923)

- Acid: a species able to **accept an electron pair**
- **Base:** a species able to donate an electron pair

Arrhenius Acid-Base definition

Arrhenius acid is a H-containing substance that dissociates in water to produce hydronium ions (H_3O^+)

Arrhenius base is an OH-containing substance that dissociates in water to produce hydroxide ions, OH-

$$
NaOH \quad \rightleftharpoons \qquad Na^+ \qquad \qquad ^+ \qquad OH^-
$$

The problems with Arrhenius

For example, ammonia (NH₃) has all the properties of a base, but doesn't contain any OH groups, so doesn't fit Arrhenius's definition

Similarly, Boric Acid (BO₃H₃) produces hydronium ions, but by taking on an OH, not by losing a H, so it doesn't fit Arrhenius's definition

$$
BO_3H_3 + H_2O \rightarrow BO_4H_4^- + H_3O^+
$$

Bronsted – Lowry definition

- Bronsted Lowry Acid (HA): An acid is a species which donates a proton.
- Bronsted Lowry Base (B): A base is a species which accepts a proton.
- These definitions are quite general and refer to the reaction between an acid and a base.
- An acid must contain H in its formula; $HNO₃$ and H_2 PO₄⁻ are two examples
- A base must contain a lone pair of electrons to bind the H⁺ ion; a few examples are NH_3 , CO_3^2 ²⁻, F⁻, as well as OH⁻.

Johannes Nicolaus Bronsted

Thomas Martin Lowry

In the Bronsted-Lowry perspective: one species donates a proton and another species accepts it: an acid-base reaction is a proton transfer process.

General Definition

Does this match Arrhenius's definition?

If I put an acid in water, it can donate a proton to form hydronium:

 $HA + H_2O \rightarrow A^- + H_3O^+$

If I put an base in water, it can accept a proton to form hydroxide:

 $B + H₂O \rightarrow BH⁺ + OH⁻$

So Bronsted and Lowry repeat Arrhenius's observations, but with more general rules:

- Water does not need to be present
- More things fit the definitions of acid and base (eg. NH₃ and BO₃H₃)

General Definition

How does water fit in to these definitions of acid/base?

So water is acting as a base

And with base: $B + H_2O \rightarrow BH^+ + OH^-$ So water is acting as an acid

Water is known as an **AMPHOTERIC** or **AMBIPROTIC** substance, since it can act as an acid and as a base.

- Proton donation and acceptance are dynamic processes for all acids and bases. Hence a proton transfer equilibrium is rapidly established in solution.
- They are not one way streets the products can turn back into the reactants.

This is known as an **EQUILIBRIUM PROCESS**, denoted by \Rightarrow

Therefore:

After an acid donates its proton, it is known as a **CONJUGATE BASE**

After an base accepts its proton, it is known as a **CONJUGATE ACID**

- A conjugate acid has one more proton than the base has, and a conjugate base one less proton than the acid has.
- If the acid of a conjugate acid/base pair is strong (good tendency to donate a proton) then the conjugate base will be weak (small tendency to accept a proton) and vice versa.

Quantifying acid/base strength

- Key concept is degree of ionization or dissociation
- Correlation exists between acid/base strength, degree of ionization in solution and extent to which solution exhibits jonic conductivity.

Degree of dissociation

- 1. Acid/base strength quantified in terms of degree of dissociation
- **2. Strong acid/base**: An acid or base is classified as strong if it is fully ionized in solution (e.g. HCl, NaOH).
- **3. Weak acid/base:** An acid or base is classified as weak if only a small fraction is ionized in solution (e.g. $CH₃COOH$, NH₃).

Examples

Strong Electrolyte : 100% dissociation

$$
NaCl (s \bigodot Na^{+}(aq) + Cl^{-}(aq)
$$

Weak Electrolyte: not completely dissociated

$$
CH_3COO H \rightleftharpoons CH_3COO^-(aq) + H^+(aq)
$$

Strong Acids are strong electrolytes

 HCl (aq) + H_2O (l) $\rightarrow H_3O^+$ (aq)+ Cl⁻ (aq) $HNO₃(aq) + H₂O (I) \rightarrow H₃O⁺ (aq) + NO₃⁻ (aq)$ Nitric acid

Weak Acids are weak electrolytes

$$
HF (aq) + H2O (I) \rightleftharpoons H3O+ (aq) + F- (aq)
$$

HNO₂ (aq) + H₂O (I) \rightleftharpoons H₃O⁺ (aq) + NO₂⁻ (aq)
Nitrows acid

Trinity College Dublin, The University of Dublin

Strong bases are strong electrolyte

NaOH (s) + $H_2O (I)$ \rightarrow Na⁺(aq)+ OH⁻(aq) KOH (s) + H₂O (l) \rightarrow K⁺(aq)+ OH⁻(aq)

Weak Bases are weak electrolytes

 NO_2^- (aq)+ H_2O (l) \rightleftharpoons OH⁻ (aq)+ HNO₂ (aq)

 $F (aq) + H₂O (l) \rightleftharpoons OH (aq) + HF (aq)$

Dissociation constant, K

We can quantify the extent of dissociation of a weak acid or a weak base in aqueous solution by introducing:

The acid dissociation constant K_a

or

The base dissociation constant K_h

These are numbers which reflect acid or base strength and are computed by determining the equilibrium concentrations of all relevant species in the solution, and inputting this data into a theoretical expression for the relevant dissociation constant.

Acid strength: the acid dissociation constant, K_a

- It is easy to quantify the strength of strong acids since they fully dissociate to ions in solution.
- The situation with respect to weak acids is more complex since they only dissociate to a small degree in solution.
- The question is how small is small?
- We quantify the idea of incomplete dissociation of a weak acid HA by noting that the dissociation reaction is an equilibrium process and introducing the acid dissociation constant, K_a .

Weak acids

 CH_3COOH + H_2O \rightleftharpoons CH_3COO + H_3O^+

$$
K_a = \frac{[CH_3COO^-][H_3O^+]}{[CH_3COOH[(H_2O)]}
$$

But, [H₂O] = constant

$$
K_a = \frac{[CH_3COO^-][H_3O^+]}{[CH_3COOH]}
$$

$$
K_a = 1.8 \times 10^{-5}
$$

[...] represents the concentration of relevant species in Molar (can be represented as mol/L, mol/dm³ or M)

Therefore:

HA + H₂O = A⁻ + H₃O⁺
\n
$$
K_a = \frac{[A^-][H_3O^+]}{[HA][H_2O]}
$$
\n=Constant
\n
$$
K_a = \frac{[A^-][H_3O^+]}{[HA]}
$$

- K_a is a measure of the acid strength.
- When K_a is large there is considerable dissociation and the acid is strong.
- When K_a is small there is a small degree of dissociation, and the acid is weak.

 K_a values vary over a wide range so it is best to use a log scale.

$pK_a = -log_{10}K_a$

When K_a is small pK_a is large and the acid does not dissociate in solution to a large extent. A change in 1 pK_a unit implies a 10 fold change in K_a value and hence acid strength.

The ion product of water

 $H_2O (I) \rightleftharpoons H^+(aq) + OH^-(aq)$

$$
K_C = \frac{[H^+][OH^-]}{[H_2O]}
$$
; K_C = Equilibrium constant and $[H_2O]$ = constant

$$
K_C[H_2O] = [H^+][OH^-]
$$

$$
K_W = [H^+][OH^-]
$$

The **ion-product constant** (K_W) is the product of the molar concentrations of H⁺ and OH⁻ ions at a particular temperature.

At 25˚C: $K_W = [H^+] [OH^-] = 1.0 \times 10^{-14}$ H^+] = $[OH^-]$ Neutral H^+] > $[OH^-]$ Acidic H^+] $<$ $[OH^-]$ Basic **Solution is**

Basicity Constant, K_b

- The proton accepting strength of a base is quantified in terms of the basicity constant K_b
- The larger the value of K_b, the stronger the base.
- If K_b is large then pK_b will be small, and the stronger will be the base.
- Solve weak base problems like weak acids **except** solve for [OH⁻] instead of [H⁺].

 $B + H₂O \Rightarrow BH^{+} + OH^{-}$

$$
K_b = \frac{[BH^+][OH^-]}{[B][H_2O]}
$$

 =Constant

$$
K_b = \frac{[BH^+][OH^-]}{[B]}
$$

$$
pK_b = -log_{10}K_b
$$

 $K_a K_b = K_w$ $pK_a + pK_b = K_w$

The pH concept

- The **best quantitative measure** of acidity or alkalinity rests in the determination of the concentration of hydrated protons [H₃O⁺] present in a solution.
- The $[H_3O^+]$ varies in magnitude over quite a large range in aqueous solution, typically from 1 M to 10-14 M.
- Hence to make the numbers meaningful $[H_3O^+]$ is expressed in terms of a logarithmic scale called the **pH scale**.
- The higher the $[H_3O^+]$, the more acidic the solution and the lower is the solution pH.
- The pH of a solution can be defined as the negative base 10 logarithm of the hydronium ion concentration.

 $pH = -log_{10} [H_3 O^+]$ $[H_3O^+] = 10^{-pH}$

pH scale

- pH is expressed on a numerical scale from 0 to 14.
- When $[H_3O^+] = 1.0 M$ (i.e. 10⁰ M), pH = 0.
- When $[H_3O^+] = 10^{-14}$ M, pH = 14.

pH

• Hence a change in one pH unit represents a change in concentration of H_3O^+ ions by
a factor of 10 10^0 M a factor of 10. 10^{0} M 10^{-7} M 10^{-14} M $\leftarrow [H_3O^+]$

 $\overline{0}$ $\overline{7}$ $\overline{14}$

pH and pOH scale

$$
pH = -log_{10} \left[H_3 O^+ \right]
$$

Similarly:

 $pOH = -log_{10} [OH^-]$

Therefore:

 $pH + pOH = 14$

Summary: pH – a measure of acidity

$$
pH = -\log_{10} \left[H_3 O^+ \right] = -\log_{10} \left[H^+ \right]
$$

pH \uparrow $[H^+]$

pH measurement: pH meter

- More accurate pH values determined using an electronic instrument called a pH meter.
- The device (consisting of a probe electrode made of glass and associated electronics) measures the electrical potential generated across a glass membrane (which separates an internal solution of known $[H_3O^+]$ from the external test solution of unknown $[H_3O^+]$) located at the electrode tip.
- This membrane potential is proportional to the pH of the test solution.
- A digital readout of solution pH is obtained.

Methods for Measuring the pH of an Aqueous Solution

pH measurements: Indicators

- Approximate pH of a solution determined by use of acid/base indicators.
- Indicators are substances (weak acids) which change colour over a specific pH range when they donate protons.
- We add a few drops of indicator (which changes colour over the required pH range) to the test solution and record the colour change produced.
- This procedure is utilized in acid/base titrations. Universal indicator (mixture of pH indicators) often used for making approximate pH measurements in range $3 - 10$.
- As solution pH increases, the indicator changes colour from red to orange to yellow to green to blue, and finally to purple.

Colors and Approximate pH Range of Some Common Acid-Base Indicators

Universal indicator is a mixture of indicators to give a full range of pH values

Titrations

In a **titration,** a solution of accurately known concentration is added gradually added to another solution of unknown concentration until the chemical reaction between the two solutions is complete.

 $HA + MOH \rightarrow MA + H₂O$

Indicator: Substance that changes color at (or near) the equivalence point

Equivalence point or Stoichiometric point: The point at which the reaction is complete

Strong acid – strong base titrations

HCl (aq) + NaOH (aq) \rightarrow NaCl (aq) + H₂O (aq)

At equivalence point:

Amount of $acid =$ Amount of base

$$
n_A = n_B
$$

$$
c_A V_A = c_B V_B
$$

0.1 M NaOH added to 25 ml of 0.1 M HCl

Weak acid – strong base titrations

CH₃COOH (aq)+ NaOH (aq) \rightarrow CH₃COONa (aq)+ H₂O (l)

 $CH₃COOH$ (aq)+ OH-(aq) \rightarrow CH₃COO⁻(aq)+ H₂O (l)

At equivalence point $(pH > 7)$:

 $14 -$ Volume NaOH 13 added (mL) pH $12 0.0$ 2.87 $11 =$ 5.0 4.14 4.57 10.0 $10 -$ 15.0 4.92 $9 -$ Equivalence \overline{p} 20.0 5.35 8 point 22.0 5.61 $7 -$ 24.0 6.12 25.0 8.72 6 26.0 10.29 5 28.0 11.75 30.0 11.96 35.0 12.22 $\overline{2}$ 40.0 12.36 45.0 12.46 $\mathbf{1}$ 50.0 12.52 $\mathbf 0$ 20 10 50 30 40 Volume of NaOH added (ml)

 $CH₃COO₃$ (aq)+ H₂O (l) \rightleftharpoons OH $\left($ aq)+ CH₃COOH (aq)

Summary

The process involves the transfer of a hydrated proton from a donor species

(the acid) to an acceptor species (the base).

- The degree of proton transfer can be quantified and enables a distinction between strong and weak acids/bases to be made.
- The degree of acidity or alkalinity of a solution may be quantified in terms of the logarithmic pH scale.
- Acidic solutions have a low pH and basic solutions have a high pH.
- The solution pH can be measured via use of indicators or via use of pH meter.
- An acid/base reaction is termed a neutralization reaction and can be

monitored by measuring the pH during the reaction.

Reading Materials

- 1. Silberberg, Chemistry, 4th edition.
- Chapter 18 \rightarrow Acid/base equilibria. pp.766 813.
- Chapter 19 \rightarrow Ionic equilibria in aqueous systems. pp.814 862.
- 2. Kotz, Treicheland Weaver, 7th edition.
- Chapter 17&18, pp.760 859.
- 3. Burrows et al. Chemistry3(OUP), 2009.Ch.6, pp.263 300.
- 4. Lecture notes available after course on School of Chemistry website located at: <http://www.tcd.ie/Chemistry/outreach/prelim/>

Useful websites

- 1. <http://www.shodor.org/unchem/basic/ab/>
- 2. <http://chemistry.about.com/od/acidsbases/>
- 3. <http://www.chem.neu.edu/Courses/1221PAM/acidbase/index.htm>
- 4. <http://dbhs.wvusd.k12.ca.us/webdocs/AcidBase/AcidBase.html>
- 5. [http://www.sparknotes.com/chemistry/acidsbases/fundamentals/secti](http://www.sparknotes.com/chemistry/acidsbases/fundamentals/section1.html) on1.html

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath

The University of Dublin

Good luck!!