Frontiers in Bioinorganic Chemistry: Metal-based Molecules for Biomedical Applications

Angela Casini

Chair of Medicinal and Bioinorganic chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany, E-mail: angela.casini@tum.de

One of the challenges of modern inorganic chemistry is translating the potential of metal catalysts to living systems to achieve controlled non-natural transformations. To this aim, transition metal catalysts offer an opportunity of modulating bio-processes through reactions that are complementary to enzymes. In this context, gold complexes, both coordination and organometallics, have emerged as promising tools for bio-orthogonal transformations, endowed with excellent reactivity and selectivity, compatibility within aqueous reaction medium, fast kinetics of ligand exchange reactions and mild reaction conditions. ^[1] This lecture will summarize recent findings from our group on Au(III)-catalyzed reductive elimination in aqueous media, providing the proof-of-concept for the use of organogold compounds – cyclometalated Au(III) C^N complexes - for the efficient modification of proteins through C-atom transfer, enabling chemoproteomic studies (e.g. profiling of cysteine residues) and novel therapeutic approaches.^[2] Furthermore, the obtained mechanistic insights have allowed to extend the cross-coupling concept to other substrates, to enable C–P and C–C bond formation under mild conditions.^[3-4]

As a second topic, the application of discrete supramolecular metal-based structures, specifically selfassembled metallacages, as potential new generation *theranostic* agents will be introduced. The robustness and modular composition of such supramolecular metal-based molecules allows for the incorporation of different functionalities in the same scaffold to enable imaging in cells v*ia* different modalities, but also active tumor targeting and stimuli-responsiveness. In this context, examples of metallacages as targeted drug delivery systems for anticancer chemotherapeutics and radioactive imaging agents will be presented.^[5] Certainly, the myriad of possible metallacage-structures and their almost limitless modularity and tunability suggest that the biomedical applications of such complex chemical entities will continue along this already promising path.

References:

[3] Bonsignore R., Thomas S.R.; Klooster W.T., Coles S.J., Jenkins R.L., Bourissou D., Barone G., Casini A., *Chemistry*, **2020**, 26, 4226-4231.

^[1] Thomas S.R., Casini A., *Curr.Opin.Chem.Biol.*, **2020**, *12*, 3456.

^[2] C. Schmidt, M. Zollo, R. Bonsignore, A. Casini, S.M. Hacker, Chem Commun, 2022, 58, 5526–5529.

^[3] R. Bonsignore, S. R. Thomas, M. Rigoulet, C. Jandl, A. Pöthig, D. Bourissou, G. Barone, A. Casini, *Chemistry Eur J*, **2021**, doi:10.1002/chem.202102668.

^[4] G.-M. Alcantar, A. Casini, FEBS Letters 2022, DOI:10.1002/1873-3468.14535.