Emission Spectrum of Hydrogen
The Periodic Table

Figure 2.5 Dmitri Mendeleev’s 1872 periodic table. The spaces marked with blank lines represent elements that Mendeleev deduced existed but were unknown at the time, so he left places for them in the table. The symbols at the top of the columns (e.g., R^2O and RH^4) are molecular formulas written in the style of the 19th century.
Naturally Occurring Man-Made

The Periodic Table

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	H 1.0079	2	He 4.0026															
3	Li 6.941	4	Be 9.0122															
5	B 10.811																	
6	C 12.011																	
7	N 14.007																	
8	O 15.999																	
9	F 18.998																	
10	Ne 20.180																	
11	Na 22.990	Mg 24.305																
12	Al 26.982																	
13	Si 28.086																	
14	P 30.974																	
15	S 32.065																	
16	Cl 35.453																	
17	Ar 39.948																	
18	K 39.102																	
19	Ca 40.078																	
20	Sc 44.956																	
21	Ti 47.867																	
22	V 50.942																	
23	Cr 52.000																	
24	Mn 54.938																	
25	Fe 55.845																	
26	Co 58.933																	
27	Ni 58.693																	
28	Cu 63.546																	
29	Zn 65.409																	
30	Ga 69.723																	
31	Ge 72.64																	
32	As 74.922																	
33	Se 78.96																	
34	Br 79.994																	
35	Kr 83.798																	
36	Rb 85.468																	
37	Sr 87.62																	
38	Y 88.906																	
39	Zr 91.224																	
40	Nb 92.906																	
41	Mo 95.94																	
42	Tc 98.906																	
43	Ru 101.07																	
44	Rh 102.91																	
45	Pd 106.42																	
46	Ag 107.87																	
47	Cd 112.41																	
48	In 114.82																	
49	Sn 118.71																	
50	Sb 121.76																	
51	Te 127.60																	
52	I 126.90																	
53	Xe 131.29																	
54	Cs 132.91																	
55	Ba 137.33																	
56	La 138.91																	
57	Ce 140.12																	
58	Pr 140.91																	
59	Nd 144.24																	
60	Pm 150.36																	
61	Sm 151.96																	
62	Eu 157.25																	
63	Tb 158.93																	
64	Dy 162.50																	
65	Ho 164.93																	
66	Er 167.26																	
67	Tm 168.93																	
68	Yb 173.04																	
69	Lu 174.97																	

Lanthanide series:
- 57 La (138.91)
- 58 Ce (140.12)
- 59 Pr (140.91)
- 60 Nd (144.24)
- 61 Pm (150.36)
- 62 Sm (151.96)
- 63 Eu (157.25)
- 64 Gd (158.93)
- 65 Tb (162.50)
- 66 Dy (164.93)
- 67 Ho (167.26)
- 68 Er (168.93)
- 69 Tm (173.04)
- 70 Yb (174.97)

Actinide series:
- 89 Ac (227)
- 90 Th (232.04)
- 91 Pa (231.04)
- 92 U (238.03)
- 93 Np (237)
- 94 Pu (244)
- 95 Am (243)
- 96 Cm (247)
- 97 Bk (251)
- 98 Cf (252)
- 99 Es (257)
- 100 Fm (258)
- 101 Md (258)
- 102 No (259)
- 103 Lr (262)
The electron in a hydrogen atom travels around the nucleus in a circular orbit.

The energy of the electron in an orbit is proportional to its distance from the nucleus. The further the electron is from the nucleus, the more energy it has.

Only a limited number of orbits with certain energies are allowed. In other words, the orbits are quantized.

The only orbits that are allowed are those for which the angular momentum of the electron is an integral multiple of Planck's constant divided by 2π.

Any object moving along a straight line has a momentum equal to the product of its mass (m) times the velocity (v) with which it moves. An object moving in a circular orbit has an angular momentum equal to its mass (m) times the velocity (v) times the radius of the orbit (r). Bohr assumed that the angular momentum of the electron can take on only certain values, equal to an integer times Planck's constant divided by 2π.

$$mv = n \left(\frac{h}{2\pi} \right)$$

$$n = 1, 2, 3...$$

$$\Delta E = R_H \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$
Electromagnetic Radiation has associated with it only discrete energies (quantized) ie. light is an electromagnetic wave

\[E = h\nu \]

Schrödinger wave equation

\[H\Psi = E\Psi \]

Electromagnetic Radiation can exhibit particle like behaviour

Wave-Particle Duality proposed by De Broglie

\[\lambda = \frac{h}{mv} \]

Complex physics and mathematics! BUT chemists want to know what it says about molecules not maths
Shapes of orbitals

Why do they take this shape? Quantum Mechanics!
For a hydrogen atom the energies are ordered purely by quantum numbers.

So the 1s orbital is the lowest in energy.

For n = 2 all orbitals (2s and 2p) are the same in energy and said to be *degenerate*.

$n = \infty$ is the ionisation energy i.e. the energy required to remove an electron.

The scale shows a more negative energy as we go to lower quantum numbers – more stable.

For hydrogen the electron is accommodated in the lowest energy orbital. This is known as its *ground state*.

The ground state electronic structure of hydrogen is \(1s^1\).

An electron can be raised in energy (promoted) to an orbital of higher energy. *This is an excited state.*
Energies of orbitals

Emission Spectrum of Hydrogen
Flame tests of other elements

Na$^+$ K$^+$ Li$^+$ Ba$^{2+}$
Filling of electrons

An aid to remember the order
Electronic structure of periods

Valence orbitals – those electrons that participate in chemistry – the highest energy electrons

Core orbitals – those that do not participate in the chemistry – held tightly to the nucleus

The octet rule can now be understood!
The Octet Rule: Atoms try to obtain the noble gas configuration by loss or gain of electrons. How does that work?

Lithium has 3 electrons: \(1s^22s^1\)

If it loses an electron to form Li\(^+\): \(1s^2\)

\(\Rightarrow \text{Li}^+ \equiv \text{He}\)
The Octet Rule:
Atoms try to obtain the noble gas configuration by loss or gain of electrons.

Fluorine has 7 electrons: $1s^22s^22p^5$

If it gains an electron to form F^-: $1s^22s^22p^6$

$\Rightarrow F^- \equiv Ne$
The Octet Rule: Atoms try to obtain the noble gas configuration by loss or gain of electrons.

Carbon has 6 electrons: $1s^22s^22p^2$

Does it gain 4 electron or lose 4 electrons?

Answer is neither – it shares its electrons.
Electronic Configurations

The Octet Rule:
Atoms try to obtain the noble gas configuration by loss or gain of electrons.

Carbon has 6 electrons: $1s^22s^22p^2$

Carbon in CH$_4$ shares 4 electrons with hydrogen so as to obtain its octet.
The Periodic Table

<table>
<thead>
<tr>
<th>Period</th>
<th>Trend in Properties</th>
<th>Row</th>
<th>Similar Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

- **s block**
- **p block**
- **d block**
- **f block**

Notable Elements
- **Lanthanide series**: lanthanum (La), actinium (Ac), etc.
- **Actinide series**: lawrencium (Lr), etc.

Periodic Table Grid

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>He</td>
<td>Li</td>
<td>Be</td>
<td>B</td>
<td>C</td>
<td>N</td>
<td>O</td>
<td>F</td>
<td>Ne</td>
<td>Na</td>
<td>Mg</td>
<td>Al</td>
<td>Si</td>
<td>P</td>
<td>S</td>
<td>Cl</td>
<td>Ar</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
</tr>
<tr>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
</tr>
<tr>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td>61</td>
<td>62</td>
<td>63</td>
</tr>
<tr>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>70</td>
<td>71</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>80</td>
<td>81</td>
</tr>
<tr>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td>89</td>
<td>90</td>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>99</td>
</tr>
</tbody>
</table>

Notable Elements
- **He**: Helium
- **Li**: Lithium
- **Be**: Beryllium
- **B**: Boron
- **C**: Carbon
- **N**: Nitrogen
- **O**: Oxygen
- **F**: Fluorine
- **Ne**: Neon
- **Na**: Sodium
- **Mg**: Magnesium
- **Al**: Aluminum
- **Si**: Silicon
- **P**: Phosphorus
- **S**: Sulfur
- **Cl**: Chlorine
- **Ar**: Argon
- **K**: Potassium
- **Ca**: Calcium
- **Sc**: Scandium
- **Ti**: Titanium
- **V**: Vanadium
- **Cr**: Chromium
- **Mn**: Manganese
- **Fe**: Iron
- **Co**: Cobalt
- **Ni**: Nickel
- **Cu**: Copper
- **Zn**: Zinc
- **Ga**: Gallium
- **Ge**: Germanium
- **As**: Arsenic
- **Se**: Selenium
- **Br**: Bromine
- **Kr**: Krypton
- **Rb**: Rubidium
- **Sr**: Strontium
- **Y**: Yttrium
- **Zr**: Zirconium
- **Nb**: Niobium
- **Mo**: Molybdenum
- **Tc**: Technetium
- **Ru**: Ruthenium
- **Rh**: Rhodium
- **Pd**: Palladium
- **Ag**: Silver
- **Cd**: Cadmium
- **In**: Indium
- **Sn**: Tin
- **Sb**: Antimony
- **Te**: Tellurium
- **I**: Iodine
- **Xe**: Xenon
- **Cs**: Cesium
- **Ba**: Barium
- **La**: Lanthanum
- **Ac**: Actinium
- **Th**: Thorium
- **Pa**: Protactinium
- **U**: Uranium
- **Np**: Neptunium
- **Pu**: Plutonium
- **Am**: Americium
- **Cm**: Curium
- **Bk**: Berkelium
- **Cf**: Californium
- **Es**: Einsteinium
- **Fm**: Flerovium
- **Md**: Moscovium
- **No**: Nihonium
- **Lr**: Lawrencium

Notable Characteristics
- Periodic Table organized by atomic number, electron configuration, and chemical properties.
- Trends in properties such as atomic radius, ionization energy, electronegativity, and metallic character across periods and groups.
- Lanthanide and Actinide series highlighting similarities in properties due to their partially filled electron shells.

Diagram Details
- The diagram highlights the periodic table with a focus on the s, p, d, and f blocks.
- Key elements are circled to emphasize their position and significance in the periodic system.
LiCO₃ pills for mood disorders

Potassium is found in foods

Cs (and Rb) used in clocks

Li

Na (145g)

K

Rb and Cs
The energy required to completely remove an electron from an atom in the gas phase:

$$E_{(g)} \rightarrow E^+_{(g)} + e^-$$

First ionisation enthalpies (kJ mol$^{-1}$) for the elements Hydrogen to Potassium.
Can we use ionisation energies to rationalise Na$^+$, Mg$^{2+}$, Al$^{3+}$?

Successive ionisation energies
Electronegativity is defined as the power of an atom in a molecule to attract electrons to itself. This is a very powerful principle for understanding the nature of the elements and the types of compounds they form with each other. Pauling assigned the most electronegative element, F, to 4. He noticed that the bond energy $E(AB)$ in a molecule AB is always greater than the mean of the bond energies $E(AA) + E(BB)$ in the homonuclear species AA and BB. His argument was that in an "ideal" covalent bond $E(AB)$ should equal this mean, and that the "excess" bond energy is caused by electrostatic attraction between the partially charged atoms in the heteronuclear species AB.
Electronegativity

The 3rd dimension of the periodic table?
Periodic Trends: As you go across a period the electronegativity increases. As you go down a group, electronegativity decreases.

Explaining the Trends in Electronegativity

The attraction that a bonding pair of electrons feels for a particular nucleus depends on:

• the number of protons in the nucleus
• the distance from the nucleus
• the number (and type) of inner electrons.
<table>
<thead>
<tr>
<th>Oxoanion</th>
<th>Name</th>
<th>Oxoacid</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClO(^{-})</td>
<td>hypochlorite</td>
<td>HClO(_{2})(aq)</td>
<td>hypochlorous acid</td>
</tr>
<tr>
<td>ClO(_{2})(^{-})</td>
<td>chlorite</td>
<td>HClO(_{3})(aq)</td>
<td>chlorous acid</td>
</tr>
<tr>
<td>ClO(_{3})(^{-})</td>
<td>chlorate</td>
<td>HClO(_{4})(aq)</td>
<td>chloric acid</td>
</tr>
<tr>
<td>ClO(_{4})(^{-})</td>
<td>perchlorate</td>
<td>HClO(_{4})(aq)</td>
<td>perchloric acid</td>
</tr>
<tr>
<td>NO(_{2})(^{-})</td>
<td>nitrite</td>
<td>HNO(_{2})(aq)</td>
<td>nitrous acid</td>
</tr>
<tr>
<td>NO(_{3})(^{-})</td>
<td>nitrate</td>
<td>HNO(_{3})(aq)</td>
<td>nitric acid</td>
</tr>
<tr>
<td>SO(_{3})(^{2-})</td>
<td>sulfite</td>
<td>H({2})SO({3})(aq)</td>
<td>sulfurous acid</td>
</tr>
<tr>
<td>SO(_{4})(^{2-})</td>
<td>sulfate</td>
<td>H({2})SO({4})(aq)</td>
<td>sulfuric acid</td>
</tr>
<tr>
<td>HSO(_{3})(^{-})</td>
<td>hydrogen sulfite</td>
<td>H({2})SO({3})(aq)</td>
<td>sulfurous acid</td>
</tr>
<tr>
<td>HSO(_{4})(^{-})</td>
<td>hydrogen sulfate</td>
<td>H({2})SO({4})(aq)</td>
<td>sulfuric acid</td>
</tr>
</tbody>
</table>

if oxoanion ends in "ite" acid ends in "ous"

if oxoanion ends in "ate" acid ends in "ic"
Bonding

Haemoglobin

\[
\text{CH}_3\text{N} - \text{CH} = \text{CH}_2
\]

Chlorophyll

\[
\text{Mg} \quad \text{CH}_3\text{C} = \text{O}
\]

\(d\)-methamphetamine

\[
\begin{array}{c}
\text{C} \quad \text{H} \\
\text{OCH}_3
\end{array}
\]

\(l\)-methamphetamine

\[
\begin{array}{c}
\text{C} \quad \text{H} \\
\text{H}_3\text{C}
\end{array}
\]
How can we use the ideas previously discussed to understand bonding?

Valence orbitals – those electrons that participate in chemistry – the highest energy electrons.

Core orbitals – those that do not participate in the chemistry – held tightly to the nucleus

e.g. F $1s^22s^22p^5$
two major types of bond

1. COVALENT
2. IONIC

Covalent is a sharing of electrons to form a bond

Ionic is loss/gain of electrons
We can use the difference in electronegativity to understand covalent and ionic bonding.
Lewis Structures

What is a bond?
- Sharing of electrons
- Covalent bond, bonding electrons localised, or fixed, between two atoms

Electrons that are not shared are localised as lone pairs

Lewis theory states that all atoms are trying to achieve a noble gas configuration \(\Rightarrow \) OCTET rule

Some rules for Lewis dot diagrams:

Only use valence electrons

Under most circumstances symmetrical geometry is correct!

Oxygen is commonly and Hydrogen always peripheral

Arrange electrons so that all non-H atoms obtain an octet (exceptions for elements in the 3rd and 4th row)
1 – Determine the total number of valence electrons
 Neutral complexes sum the valence electrons
 Cationic complexes *subtract* the charge
 Anionic complexes *add* the charge

2 – Draw the skeletal structure with single bonds. (H is NEVER a central atom)

3 – Place pairs of electrons around the outermost atom

4 – Place any surplus electrons on the central atom

5 – If the central atom does NOT have 8 electrons form a double bond
What are the structures of ionic solids e.g. NaCl?

- Can be thought of as effectively packed arrays of ions

- Efficient means maximising the contacts with oppositely charged ions

The structure of Sodium Chloride shows a coordination number of 6.

The structure of Cesium Chloride shows a coordination number of 8.